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Abstract 

This work intends to introduce an analytical solution for 

determining steady state creep stresses in thick hollow cylin-

der under centrifugal and mechanical loads. The solution is 

based on generalized strain measures. Asymptotic solution 

is obtained at critical points of the nonlinear differential 

equation defining deformed state using Seth’s transition 

theory. The advantage of this method is that it overcomes 

the incompressibility condition in classical theory and also 

any type of the physical problem can be solved without using 

creep strain law or jump conditions. The inhomogeneity in 

the cylinder is assumed to vary radially according to power 

law. In this problem, the effect of anisotropy, non-homoge-

neity and rotation on thick hollow cylinder has been investi-

gated for three materials. The results are compared with 

the previous work and help to attain better agreement between 

experimental and theoretical results. The main result of this 

study is that, by applying a suitable angular velocity and 

non-homogeneity parameter, the distributions of mechanical 

displacement and mechanical stresses can be controlled. 

Ključne reči 

• cilindar 

• puzanje 

• ortotropan 

• pritisak 

• funkcionalni kompozitni materijal (FGM) 

Izvod 

U radu je prezentovano analitičko rešenje za određiva-

nje napona stacionarnog puzanja kod debelog šupljeg cilin-

dra, pod dejstvom centrifugalnog i mehaničkog opterećenja. 

Rešenje se zasniva na generalizovanoj meri deformacija. 

Asimptotsko rešenje je dobijeno u kritičnim tačkama neli-

nearne diferencijalne jednačine, kojim se definiše deformi-

sano stanje preko teorije prelaznih napona Seta. Prednost 

ove metode je što predupređuje uslov nestišljivosti u klasič-

noj teoriji i, takođe, bilo koji fizički problem se može rešiti 

bez primene zakona puzanja ili uslova prekidnog skoka. 

Pretpostavlja se da nehomogenost u cilindru varira radijal-

no prema eksponencijalnom zakonu. Kod ovog problema, 

uticaj anizotropije, nehomogenosti i rotacije na debeli šuplji 

cilindar su istraženi za tri materijala. Rezultati se upoređeni 

sa prethodnim radom i doprinose boljem poklapanju teorij-

skih i eksperimentalnih rezultata. Osnovni rezultat u ovom 

radu se sastoji u tome da primenom odgovarajuće ugaone 

brzine i nehomogenog parametra dozvoljava kontrolisanje 

raspodele mehaničkog pomeranja i napona. 

INTRODUCTION 

Orthotropic structures are very common in present day 

engineering. Orthotropic cylinder has gained extensive uses 

and acceptance and has already earned worldwide popularity 

in nearly all kinds of applications, housing, marine, highway 

bridge deck, aerospace and for strengthening of structures. 

As, we know that large number of real materials often stiffer 

in one orientation than in other orientations. The area of 

anisotropic materials is very vast and tough to investigate. 

Failure of cylinders fabricated of anisotropic material can 

be fatal to person and surroundings. In this research paper, 

we study effects of orthotropic materials that differ in stiff-

ness in three orthogonal axes. Therefore, the reliability of 

the cylinder should be promised. Further, in many of the 

applications, the material of the cylinders operates at exces-

sive stress and temperature /1/ that cause creep failure. FGMs 

are basically non-homogeneous composite materials which 

are extremely heat resistant and with enhanced mechanical 

properties in engineering fields /2-3/. It is well known that 

most materials are non-homogeneous due to imperfect manu-

facturing conditions. Owing to its unique features with appli-

cations to many material science and engineering fields, the 

FGM structure has attracted the interest of researchers and 

engineers. Bailey creep theory /4/ is proposed for an ideal-

ised homogeneous material loaded uniaxially. Betten /5/ 

mentioned the creep mechanics of cylinders. Bhatnagar et 

al. /6/ calculated creep stresses and strain rates in homoge-

neous orthotropic rotating cylinder using Norton’s law and 

concluded that anisotropic material is beneficial for manu-

facturing purposes because it allows the cylinder to sustain 

larger forces without a risk of failure under creep. Later on, 

Zenkour /7/ obtained the analytic solutions for the rotating 

orthotropic cylinders of variable and uniform thickness and 

concluded that varying thickness in cylinders shows excel-

lent result. Also, Singh et al. /8/ investigated creep behaviour 
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using Hoffman's yield criterion in an FG thick composite 

cylinder subjected to internal pressure in the presence of 

residual stress and concluded that residual stresses have 

strong influence on creep rates. Also, Manoj et al. /9/ deter-

mined solution in closed form for radial and circumferential 

stresses in FG disk using infinitesimal strain theory. Manoj 

et al. /10/ obtained analytical solution for two-dimensional 

FG pressurized cylinder using power series method and 

analysed numerically. Manoj et al. /11/ analysed the effect 

of mechanical and thermomechanical stresses on sandwich 

composition of thick-walled cylinder using finite element 

analysis. All the above researchers use infinitesimal theory 

of elasticity. The result obtained using infinitesimal theory 

is found to be on unsafe side when compared to those 

obtained using finite strain theory as it neglects the non-

linear terms of displacement. Seth’s transition theory /12/ 

act as a benchmark in dealing with the problems of elastic-

plastic and creep deformation which has been applied by 

various researchers, i.e. S.K. Gupta et al. /13/ determined 

the stresses for orthotropic rotating cylinder. Sharma et al. 

/14/ investigated the creep stresses in pressurized rotating 

spherical shell and discusses the impact of inhomogeneity. 

However, studies related to creep in pressurized ortho-

tropic thick-walled cylinders fabricated of functionally 

graded materials are few in number. Thus, a research must 

be undertaken to study the creep mechanism in an FG ortho-

tropic cylinder under pressure and rotation. In this study, 

we theoretically analyse the impact of inhomogeneity in the 

evaluation of creep deformation. 

OBJECTIVE OF THE STUDY 

The aim is to study the behaviour of rotating thick-

walled orthotropic cylinder with varying material properties 

subjected to pressure. Analysis of yield stress informs the 

designers a bit more about the safety of the cylinder at the 

acting pressure. Therefore, our main objective is to analyse 

allowable elastic-creep stresses in an open-ended FG rotat-

ing orthotropic thick hollow cylinder under pressure, to 

incorporate a ‘safety factor’ that prevents the pressurized 

cylinder from bursting and helpful in practical design of 

orthotropic cylinder. 

BASIC FORMULATION OF THE PROBLEM 

We now study an open ended axisymmetric thick-walled 

orthotropic cylinder fabricated of FGM with inside and 

outside radii ai and b0 respectively, under pressure pai and 

pb0, respectively. Axisymmetric deformations are considered 

so that u is the only displacement component. The z-axis is 

considered as axis of rotation. Displacement components in 

the cylindrical coordinate system are: 

 (1 )ru r = − ,   0u = ,   and   zu cz= , (1) 

where:  is defined as a function of r only; and c is defined 

as a constant. 

Generalized strain measure jj is defined by Seth as inte-

gral of the weighted function 
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where: n denotes the measure; and jj
A are the Almansi prin-

cipal components of strain. 

Using Eq.(2), the generalized components of strain are 
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where: n is nonlinear measure; and ′ = d/dr. 

Component of stress for orthotropic material is given as 
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where: rr,  and zz denotes stresses in radial, tangential 

and axial direction. 

FUNCTIONALLY GRADED MATERIAL FORMULATION 

Here we take into consideration functionally graded ortho-

tropic material in which material properties vary radially as: 
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where: ai ≤ r ≤ b0 (k ≤ 0), the subscript 0i,j represents corre-

sponding value on the external surface of the functionally 

graded thick hollow cylinder, and k is power-law index of 

material non-homogeneity; C0ij is the material property, such 

as elastic coefficient. 

Using Eq.(5) in Eq.(4), we get 
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0r z zr   = = = ,  (6) 

where: ij, eij are stress and strain tensors, respectively. 

Equation of equilibrium /12/ is given as, 

 2 2( ) 0rr
d

hr h h r
dr

  − + = , (7) 

where: radial coordinate is denoted by r; radial and tangential 

or hoop stresses are denoted by rr and , respectively; 

wall thickness is denoted by h, the density of the material is 
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denoted by  ; and angular speed of rotating non-homoge-

neous cylinder is denoted by . 

IDENTIFICATION OF TRANSITION POINT 

In response to applied loading to a deformable solid, we 

noticed that the solid body first undergoes elastic deforma-

tion. If the loading is further sustained, plastic flow might set 

in and lead to creep. So, there always exists a transitional  

 

state in between elastic and creep state that is identified as 

transition state, /15/. To clarify the transition from elastic to 

creep state, firstly, we require to identify transition state as 

an asymptotic one. Therefore, the differential system describ-

ing the elastic state should reach a critical value in the tran-

sition state. The nonlinear differential equation for transi-

tion state is obtained by substituting Eq.(6) in Eq.(7), as 
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where: r′ = . 

Transition points /16/ of  in Eq.(5) are  → 0,  → -1, 

and  → . 

Transition points are basically the critical points of the 

equation whenever the equation is asymptotically stable and 

derivates are not differentiable. At this physical point, dis-

tinction between elastic and creep state disappears. 

Boundary conditions considered are 

 
0 0  at     and     at  

irr a i rr bp r a p r b = − = = − = . (9) 

Resultant of force normal to the plane z = const. must 

vanish, i.e. 
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CREEP STRESSES 

It has been found /12-15/ that transition function given 

by principal stress-difference at the transition point  → –1 

evaluate creep stresses. The transition function TR is defined 

 1
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We take logarithmic differentiation of Eq.(11) with 

respect to ‘r’, and take the asymptotic value as  → –1, and 

integrate, we get 

 1TR AF= , (12) 
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Using Eq.(12) in Eq.(11), we get 
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Substituting this in equilibrium Eq.(7), we obtain 
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Using boundary condition Eq.(9) in Eq.(14), we get 
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Substituting the values obtained above of A and B in 

Eqs.(14) and Eqs.(15), creep stresses for steady state ortho-

tropic cylinder are given by: 
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Taking into account the following dimensionless quanti-

ties as: R = r/b0, R0 = ai /b0, rr = rr /C011,   =  /C011, 

zz = zz /C011, 2 =2b0
2/C011. 

Inserting the above dimensionless form of radial, hoop, 

or circumferential and axial creep stresses for FG ortho-

tropic cylinder given by Eq.(17), Eq.(18) can be rewritten as 
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RESULTS AND DISCUSSION 

In order to compute the numerical results, an orthotropic 

and isotropic cylinder fabricated of FGM is considered with 

plain strain assumption. The inside and outside radius of the 

cylinder are considered as ai = 1 and b0 =2, respectively. 

Compressibility which is one of the mechanical properties 

of the cylinder is presumed to be changing through the 

radius. Material property of the cylinder fabricated of FG 

orthotropic material (barite and uranium (alpha)) and iso-

tropic material (steel) are shown in Table 1. 

Table 1. Elastic constants Cij used (in units of 1011 N/m2). 

Materials  
11C   

12C  
13C   

21C   
22C   

23C    

 steel 

(isotropic)  
5.326 3.688 3.688 3.688 5.326 3.688 7.8 

 barite 

(orthotropic) 
0.8941 0.4614 0.2691 0.4614 0.7842 0.2676 4.4 

 uranium (alpha) 

(orthotropic) 
2.1486 0.4622 0.2176 0.4622 1.9983 1.0764 19.0 

Table 2.1. Creep stresses for FGM cylinder fabricated of barite material with Pai = 3, Pb0 = 1 and Pai = 1, Pb0 = 3. 

 N = 3 N = 5 

pressure angular velocity k/R 0.5 0.7 0.9 0.5 0.7 0.9 

Pai > Pb0 

0.7 
-2 

-3 

10.12 

23.23 

5.32 

15.52 

1.24 

5.77 

6.81 

6.80 

2.83 

2.80 

0.21 

0.23 

1 
-2 

-3 

18.91 

40.81 

10.47 

27.51 

3.09 

10.65 

13.38 

13.37 

6.3 

6.26 

1.37 

1.4 

1.3 
-2 

-3 

30.79 

193.05 

17.44 

131.39 

5.59 

53.74 

22.28 

22.20 

11.01 

10.93 

2.93 

2.98 

Pb0 > Pai 

0.7 
-2 

-3 

2.78 

6.55 

0.57 

3.5 

-1.7 

-0.39 

1.82 

8.39 

-0.14 

-0.15 

-1.99 

-1.99 

1 
-2 

-3 

11.57 

24.13 

5.72 

15.49 

0.14 

4.47 

8.39 

17.24 

3.33 

3.311 

-0.84 

-0.82 

1.3 
-2 

-3 

23.46 

140.88 

12.68 

95.15 

2.64 

37.48 

17.29 

1.82 

8.04 

7.99 

8.049 

0.75 
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Table 2.2. Creep stresses for FGM cylinder fabricated of uranium (alpha) material with Pai = 3, Pb0 = 1 and Pai = 1, Pb0 = 3. 

 N = 3 N = 5 

pressure angular velocity k/R 0.5 0.7 0.9 0.5 0.7 0.9 

Pai > Pb0 

0.7 
-2 

-3 

18.11 

59.3 

10.26 

41.99 

3.1 

17.02 

12.062 

12.88 

5.53 

5.58 

1.09 

1.07 

1 
-2 

-3 

34.93 

108.91 

20.32 

77.31 

6.77 

31.78 

24.06 

25.53 

11.81 

11.9 

3.17 

3.12 

1.3 
-2 

-3 

57.38 

841.12 

33.92 

601.86 

11.73 

254.23 

40.28 

43.94 

20.32 

20.83 

5.97 

5.98 

Pb0 > Pai 

0.7 
-2 

-3 

10.19 

32.03 

5.05 

21.87 

-0.05 

7.33 

6.98 

7.42 

2.54 

2.57 

-1.11 

-1.13 

1 
-2 

-3 

27.01 

81.64 

15.1 

57.19 

3.61 

22.09 

18.98 

20.07 

8.82 

8.89 

0.96 

0.92 

1.3 
-2 

-3 

49.76 

705.1 

28.7 

503.78 

8.58 

211.43 

35.2 

38.27 

17.33 

17.76 

3.76 

3.76 

Table 2.3. Creep stresses for FGM cylinder fabricated of steel material with Pai = 3, Pb0 = 1 and Pai = 1, Pb0 = 3. 

 N = 3 N = 5 

pressure angular velocity k/R 0.5 0.7 0.9 0.5 0.7 0.9 

Pai > Pb0 

0.7 
-2 

-3 

3.82 

8.6 

1.55 

5.37 

-0.13 

1.59 

2.39 

2.24 

0.49 

0.47 

-0.56 

-0.52 

1 
-2 

-3 

6.32 

12.85 

2.99 

8.19 

0.36 

2.72 

4.36 

4.15 

1.53 

1.52 

-0.21 

-0.17 

1.3 
-2 

-3 

9.7 

48.59 

4.92 

31.84 

1.04 

12.43 

7.03 

6.64 

2.94 

2.88 

0.25 

0.3 

Pb0 > Pai 

0.7 
-2 

-3 

-3.03 

-4.45 

-2.8 

-3.93 

-2.9 

-3.41 

-2.6 

-2.55 

-2.48 

-2.48 

-2.77 

-2.78 

1 
-2 

-3 

-0.53 

-0.21 

-1.37 

-1.11 

-2.39 

-2.28 

-0.63 

-0.64 

-1.44 

-1.45 

-2.43 

-2.42 

1.3 
-2 

-3 

2.84 

14.61 

0.56 

8.71 

-1.72 

1.72 

2.04 

1.92 

-0.03 

-0.05 

-1.96 

-1.94 
 

To see the effect of many parameters i.e. finite strain 

measure N = (n)–1, inside pressure Pai and outside pressure 

Pb0 on thick-walled rotating cylinder fabricated of FGM 

(barite, uranium (alpha), and steel), Table 1, Table 2, and 

the graphs have been plotted among radii ratio and creep 

stresses for different pressure under centrifugal force. The 

angular velocity with which cylinder rotates is 0.5, 1. 

The results are presented in a non-dimensional form. The 

distribution of creep stresses at different angular velocity 

for different materials with linear strain measure are drawn 

in Fig. 1. It seems from Fig. 1 that for linear measure, the 

creep stresses in the cylinder fabricated of homogeneous 

material increases as compared to the cylinder composed of 

non-homogeneous material. Moreover, circumferential stresses 

are maximum at inner surface, and tensile. It can be seen 

that the circumferential creep stress decreases with decrease 

in angular velocity. However, for high FG cylinder, these 

creep stresses are less as compared to the less FG cylinder. 

Creep stresses for isotropic material steel are less as com-

pared to orthotropic material barite and uranium (alpha). 

The results for the creep stresses of circular cylinder with 

linear strain measure are compared with those of nonlinear 

strain measure in Figs. 1-4. According to results plotted in 

Fig. 2, circumferential creep stresses are maximum for less 

FG orthotropic material as compared to the homogeneous 

orthotropic cylinder with nonlinear strain measure. Also, it 

has been noticed that circumferential creep stresses are 

maximum for cylinder fabricated of isotropic FGM as com-

pared to orthotropic FGM or homogeneous material. It is 

noticed that with the consideration of nonlinearity, the out-

comes are better, because in case of classical theory, this 

nonlinear transition region through which in actual yield 

occur is neglected and creep strains are never linear. In the 

transition state, entire material is participating, not merely a 

particular region or line, as is presumed by classical theories. 

A recent numerical investigation /16/ on the flow and defor-

mation theories, additionally shows that a continuous approxi-

mation through a transition region ends up satisfactory as 

well as a convergent solution. 
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Figure 1. Creep stress of dissimilar materials: a) barite; b) uranium 
(alpha); c) steel; for non-homogeneity parameter K with Pai = 4, 

Pb0 = 0.5, N = 1, where solid and dashed lines respectively 

represent angular velocity 2 = 1 and 0.5. 
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Figure 2. Creep stress of dissimilar materials: a) barite; b) uranium 
(alpha); c) steel; for non-homogeneity parameters K with Pai = 4, 

Pb0 = 0.5, N = 3, where solid and dashed lines respectively 

represent angular velocity 2 = 1 and 0.5. 

In a like manner, the distribution of the creep stress in 

the cylinder is shown in Fig. 3. For nonlinear measure, the 

homogeneous orthotropic cylinder has less circumferential 

creep stresses as compared to high or less FG cylinder, as 

illustrated in Fig. 4. We see creep stresses increase at inner 

surface, while they decrease at outer surface. To clarify the 

effect of pressure, Figs. 3 and 4 are presented. 

The results of Figs. 1 to 4 can be summarized as follows: 

– Creep stresses of the cylinder under pressure are tensile in 

nature. 

– Cylinder subjected to pressure and centrifugal loading 

shows different behaviour as we consider linear and non-

linear strain measure. 

– Angular velocity has considerable effect on the displace-

ments and creep stresses in the cylinder. 

– In the cylinder, the creep stress rises with increase in the 

value of inside pressure. 

– The non-homogeneity parameter is highly effective under 

the inside and outside pressures to tailor the mechanical 

properties of the material. 

Influence of measure and non-homogeneity on the creep 

stresses is shown in Tables 2.1, 2.2 and 2.3. It is noticed 

that creep stresses are tensile and are maximal at inner 

surface with nonlinear measure, as can be noticed from the 

Tables 2.1, 2.2 and 2.3. It is also observed that with the 

decrease in nonlinearity, the creep stress increases. It is 

observed from Table 2.1 that creep stresses are maximum 

for the cylinder fabricated of less non-homogenous material 

and are high for the cylinder fabricated of highly non-homo-

geneous material. Also, with the increase of angular velocity, 

the creep stress increases. When the inside pressure is more 

than the outside pressure, the stresses are tensile but when 

the inside pressure is less than outside pressure, these stresses 

become compressive from tensile, as illustrated in Tables 

2.1, 2.2 and 2.3. 
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Figure 3. Creep stress of dissimilar materials: a) barite; b) uranium 
(alpha); c) steel; for non-homogeneity parameter K with Pai = 2, 

Pb0 = 0.5, N = 1, where solid and dashed lines respectively repre-

sent angular velocity 2 = 1 and 0.5. 
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Figure 4. Creep stress of dissimilar materials: a) barite; b) uranium 

(alpha); c) steel; for variable non-homogeneity parameter K with 

Pai = 2, Pb0 = 0.5, N = 3, where solid and dashed lines respectively 

represent angular velocity 2 = 1 and 0.5. 

It has been noticed from Table 2.2 that circumferential 

creep stresses are maximum at the inner surface of rotating 

cylinder when inside pressure is more than outside pressure, 

for angular speed 1.3. With increase in non-homogeneity, 

these creep stresses further decrease. It can be observed that 

at outside surface these stresses become compressive from 

tensile. Also, when the inside pressure is less than outside 

pressure, the creep stress become compressive. From Tables 

2.2 and 2.3 it is also noticed that circumferential or tangen-

tial creep stresses are less for highly non-homogeneous rotat-

ing cylinder, and these creep stresses increase with the 

decrease in non-homogeneity. Also, circumferential creep 

stresses are high for orthotropic material, i.e. uranium (alpha) 

as compared to orthotropic material, i.e. barite and isotropic 

material, i.e. steel. From Tables 2.1, 2.2 and 2.3, it can be 

observed that with the increase in measure, circumferential 

creep stresses decrease significantly. 

CONCLUSIONS 

On the basis of above discussion, conclusion revealed 

that circular cylinder fabricated of homogeneous isotropic 

material (steel) under pressure with nonlinear measure is a 

better choice for designing, as compared to cylinder fabri-

cated of FG orthotropic material (barite) and orthotropic 

material (uranium). It is due to the reason that circumferen-

tial or hoop stresses are less for steel as compared to barite 

and uranium. Cylinder with less angular velocity is safer for 

design. This helps in stress savings, thus minimizes the 

chances of fracture of cylinder, due to inside and outside 

pressure. 
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