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Abstract 

The objective of this article is to present a practical 

method for calculating structural reliability in case of a 

mixture of random and fuzzy input variables. In order to 

facilitate a unified framework for handling fuzzy and 

random variables, the novel formulas are proposed for 

establishing normal random variables equivalent to the 

symmetric triangular fuzzy number. From these equivalent 

random ones, the original problem is converted to the basic 

structural reliability problem, then the methods of the tradi-

tional reliability theory should be applied for calculation. 

Simultaneously, this article presents two notions in terms of 

central reliability and marginal reliability, and a technique 

to define them. Numerical results are compared with that of 

the existing methods, to demonstrate the accuracy and effec-

tiveness of the proposed method. 

Ključne reči 

• maksimalna specifičnost 

• nedovoljan razlog 

• teorija mogućnosti 

• fazi pouzdanost 

• pouzdanost konstrukcija 

Izvod 

Cilj rada je da se predstavi praktična metoda za prora-

čun pouzdanosti konstrukcije za slučaj mešavine ulaznih 

slučajnih i fazi promenljivih. Predložene su nove formule 

koje obezbeđuju integrisani okvir za obradu fazi i slučajnih 

promenljivih, gde se ostvaruju normalne slučajne promen-

ljive, ekvivalentne simetričnom trougaonom fazi broju. Iz 

ovih ekvivalentnih slučajnih promenljivih, originalni prob-

lem se prevodi u osnovni problem pouzdanosti konstrukcije, 

a zatim se za proračun mogu primeniti metode tradicional-

ne teorije pouzdanosti. Istovremeno, u radu su date dve 

pretpostavke koje se odnose na centralnu pouzdanost i na 

marginalnu pouzdanost, kao i postupak za njihovo definisa-

nje. Numerički rezultati su upoređeni sa postojećim meto-

dama, radi demonstracije tačnosti i efikasnosti predložene 

metode. 

INTRODUCTION 

In engineering structures, most of the input data, such as 

load characteristics, material properties, boundary conditions, 

geometric dimensions, load-carrying capacities, contain non-

deterministic quantities, which are described as uncertainty 

variables. In /1/, uncertainties present in a structural system 

can be categorized as either aleatory or epistemic. If the 

input data are random parameters, the limit state function is 

a random parameter, expressed as follows 

 M R S= − , (1) 

where: M - limit state function; R - resistance function; S - 

load effect function. 

The structural reliability is defined as /2-6/ 

 sP  Prob( 0)M=  . (2) 

Due to using the probability theory, which is the most 

complete theory, assessing structures by the reliability index 

is prescribed in structural design codes /7, 8/. When the 

input data in structural systems are epistemic uncertainties, 

depending on how to describe the uncertainties, the struc-

tural reliability can be derived by different approaches, as 

using either the fuzzy set theory /9-11/ or the fuzzy random 

theory /12, 13/. 

For realistic systems, aleatory and epistemic uncertain-

ties exist simultaneously in the reliability assessment. In 

this context, the difference for the basic feature of uncer-

tainties will create the challenging problems. 

Unique and provably correct solutions to the problems 

cannot be demonstrated, /14/. When epistemic uncertainties 

are represented as fuzzy numbers, three classes of approaches 

commonly are pursued evaluating the structural reliability 

Ps which can be recognised as fuzzy stress - random 

strength interference model, or transformation random vari-

ables to fuzzy variables for calculating the fuzzy reliability, 

and transformation of fuzzy variables to random variables 

for calculating the basic reliability. These approaches are 

analysed below in detail. 

In /16/, the authors have proposed a formula for fuzzy 

reliability analysis of mechanical structures when the stress 

S is modelled as a fuzzy number with a given membership 
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function S(x) and the strength R is modelled as a random 

variable with given distribution function f (x). The authors 

idealized that fuzzy reliability in the fuzzy stress-random 

strength interference model is a real value, and used the 

Zadeh's notion, /15/, to calculate the probability of a fuzzy 

event. The drawback of this approach is that two functions 

under the integral in the formula (5) of /16/ have different 

measurements: the area between the curve f (x) and the 

abscissa is unit, but for the fuzzy number S(x) it is not. 

Different from /16/, considering that the -cuts of a fuzzy 

number are the probability density functions, for instance, 

the linear distribution /17/, or uniform distributions /18/, the 

authors /17, 18/ computed the conventional probability at 

various -cuts, and the reliability probability is the average 

at the -cuts. However, as can be seen different distribution 

assumptions lead to totally different reliability results, so as 

to innovate, the authors /19/ define the reliability in the case 

of a mixture of random and interval variables, at the worst 

case a combination of interval variables, by solving optimi-

sation problems for reliability subjected to marginal of 

interval variables. This opinion is extended in the presence 

of random and fuzzy uncertainties. In /20/, the authors 

consider that reliability is a fuzzy number, and combine 

methods: high dimensional model representation (HDMR) 

method to approximate the limit state function; the method 

interval variable transformation to reduce a high amount of 

optimisation problems and estimation of failure probability 

bounds using fast Fourier transform (FFT). Different from 

/20/, the authors in /21/ propose three reliability indices 

with the mixture of random and fuzzy variables. These 

reliability indices are: the interval reliability index defined 

by upper bound ( )I
rP  and lower bound 

( )I
rP , that represent 

expectations of the maximum and minimum reliability Pr at 

the given membership level ; the mean reliability index is 

the average of upper bound 
( )I

rP  and lower bound 
( )I
rP ; 

the numerical reliability index is an expectation of reliabil-

ity. In order to define the interval reliability index and the 

mean one, needed to solve optimisation problems at each 

membership level  when the fuzzy numbers are trans-

formed to interval numbers (similar to /20/), the integral is 

then calculated at -cuts to determine these reliability 

indices. In order to define the numerical reliability index, 

the interval variables are assumed as uniform distribution at 

the given -cuts, then the traditional reliability analysis 

methods could be applied. Similar to the interval reliability 

index and the mean one, the numerical one is defined 

according to integral formula at the -cuts, the details could 

be seen in /21/. In order to reduce computational cost, the 

probability density evolution method (PDEM) is applied. 

From the analysis above, one realizes that use of the 

traditional reliability analysis theory is a basis for assessing 

fuzzy reliability, when the input parameters are the mixture 

of random and fuzzy variables, is a reasonable approach, 

because traditional probabilistic methods remain dominant 

in the field of measurements, /22/, and are well established 

in decision making problems, /23/. However, determining 

reliability at the -cuts by either solving optimisation prob-

lems /19-21/ or assuming equivalent probability density 

functions of interval numbers /17-19/, is very time-consum-

ing, because the traditional reliability analysis has to be 

carried out for every evaluation. In order to overcome this 

drawback, based on the innovation for the conservatism of 

the principles of probability- possibility transformations, 

the article presents a new method to transform a symmetric 

triangular fuzzy number into three equivalent normal distri-

butions. Then, a fuzzy reliability problem will be converted 

to traditional reliability problem and given two definitions 

and assessments of reliability: central reliability, is the 

‘belief’ value of reliability; and marginal reliability, that 

represents an estimator of interval reliability [Psmin, Psmax]. 

These two assessments, as in /21/, can give an intuitive of 

reliability, and easily compare with prescribed reliability in 

structural design codes /7, 8/. Numerical results are com-

pared with those of the existing methods, when the limit 

state functions are explicit, to demonstrate the accuracy and 

effectiveness of the proposed method. 

TRANSFORMATION PRINCIPLES AND THE INNO-

VATION APPROACH 

Transformation principles and the basic idea of the innova-

tion approach 

Probability measure (probability density function) and 

fuzzy number (possibility distribution function) are not yet 

two equivalent representations of uncertainty. The transfor-

mation from fuzzy measures into probability measures and 

conversely can be useful in any problem where heterogene-

ous uncertain and imprecise data must be dealt with, /24/. 

Formally, the transformation from fuzzy measure to proba-

bility measure needs to add information to some probabilis-

tic knowledge, besides, the converse transformation from 

probability measure to fuzzy measure, some information is 

lost. The transformation principles are proposed by Dubois 

et al. /22, 24, 25/, and Klir G. /26/. In /22, 24, 25/, Dubois 

proposed to use the principle of the insufficient reason for 

the transformation from a fuzzy measure to a probability 

measure, and the principle of the maximum specificity for 

the converse transformation from a probability measure to a 

fuzzy measure. The principle of insufficient reason aims at 

finding a probability measure which preserves the uncer-

tainty of choice between outcomes. The principle of maxi-

mum specificity aims at finding the most informative possi-

bility function, which has the narrowest in the predefined 

-cuts. 

Apart from Dubois's transforms, in /26/, Klir proposed 

the principle of uncertainty invariance for the transfor-

mation from possibility to probability and the converse 

transformation from probability to possibility. The advantage 

of this principle is information preservation of fuzzy meas-

ure and the equivalent probability one. However, see /27/ 

(pp. 258-259), the results of using the one may conflict with 

the probability/possibility consistency principle. Besides, 

the Klir's approach, /26/, should be based on three assump-

tions, but the Dubois's approach /22, 24, 25/ does not make 

any assumption. Nevertheless, for an initial fuzzy number, a 

transform forward to probability measure by the principle 

of insufficient reason, then, from this probability measure, a 
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transform backward to fuzzy measure by the principle of 

maximum specificity, the last fuzzy number is different 

from the initial one. Hence, transformations (from possibil-

ity to probability and converse) based on these two princi-

ples make non-conservative information, and the calcula-

tion result of reliability is hard to prescribe. 

From the discussions above, the paper proposes an inno-

vation to determine normal random variables that are equiv-

alent fuzzy variable, based on the total least deviations 

(deviation of probability measurement between normal 

random variables and random variables are transformed by 

the principle of insufficient reason, deviation of possibility 

measurement between the initial fuzzy variable and the 

fuzzy variables are transformed from normal random varia-

bles by the principle of maximum specificity). This approach 

is applied for symmetric triangular fuzzy number, which is 

normally used to represent input data in fuzzy reliability 

problems. Using normal density function is natural because 

it looks like the most important distribution in the tradi-

tional reliability problem. In the next section, the formulas 

are established to determine these normal density functions. 

Establishing formulas in terms of the innovation idea 

(a)

     

(b)

      

Figure 1. Transformation to a standardized fuzzy variable: a) 

original fuzzy variable; b) standardized fuzzy variable. 

For a symmetric triangular fuzzy number ( , )LRiX a l=   

(Fig. 1), where: a - belief value (at the membership level 

 = 1) of the fuzzy number; l - spread of fuzzy number; the 

standardized fuzzy variable (0,1)LRix =  is defined by using 

transformation, /28/, 

 i
i

X a
x

l

−
= . (3) 

From the standardized fuzzy number (0,1)LRix = , the 

density distribution function is derived by using the princi-

ple of the insufficient reason 

 

1
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 (4) 

Consider the normal density distribution function p1(x), 

where the expectation  = 0 (is equal to the belief value of 

the standardized fuzzy number), and the variance is 2, 
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For event {A} : –1  xo  x. Because of the symmetry of 

the two density distribution probability functions p(x) and 

p1(x), we only consider the case x  0. 

Probabilities of event A for density distribution functions 

p(x) and p1(x) are 

  
1

1 1
(A) ln( ) ln( ) 1

2 2

x

P x dx x x x
−

= − − = − − + , (6) 
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In order to equal the two probability functions, one needs 

 1(A) (A) minP P− → , 

or ( )
2

1(A) (A) min ),   [ 1,0xP P   −− → . (8) 

From Eq.(6), we get  

 ( )
0

2
1 1

1

( ) (A) (A) minF P P dx
−

= − → , (9) 

where: P(A), P1(A) are determined by Eqs.(4) and (5). 

Because the domain of density distribution function p(x) 

is within [–1,1], while the domain of density distribution 

function p1(x) is within (–,+), in order that the probabil-

ity of density distribution function p1(x) within (–,+) be 

insignificant, one needs 
2

21
2

2 1 0
1

( ) A*:   ( , 1) min
2

x

F P x e dx





 
− −  

 

−

=  − − = →     (10) 

Combine Eqs.(9) and (10), and we have 

 1 2( ) ( ) ( )F F F  = + =  

( )

2

20 1
2 2

1
1

1
(A) (A) min

2

x

P P dx e dx




 
− −  

 

− −

= − + →  . (11) 

Equation (11) is used to determine the deviation  of the 

normal density distribution function p1(x) which is equiva-

lent to the density distribution function p(x). 

Backward transforms from the normal density distribu-

tion p1(x) to equivalent possibility function (membership 

function) by principle of maximum specificity, /22, 24, 25/, 

 
6

1 1 1 1
6

( ) ( ) ( ) ( )
x

x

x x p y dy p y dy




 
− −

= − = +  . (12) 

Because the normal density distribution function p1(x) is 

symmetric, so f(x) = y = –x, and 3 rule is applied (limits    

– and + are replaced by –6 and 6, respectively). 

Membership function of the standardized fuzzy number is 

 

1  ;    [ 1,0]
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x x

x x x

x x
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 (13) 
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A difference from the probability theory, in the fuzzy 

theory, fuzzy measures (possibility measure, necessity meas-

ure ...) is defined according to membership function (possi-

bility distribution function) by the max/min operator. Hence, 

with the similar reason presented above, we have 

 ( )
0 1

2 2
1 1

1

( ) ( ) 1 ( ) minG x x dx x dx  
−

− −

= − − + →  . (14) 

In order to solve the multiobjective optimisation problem 

Eq.(11) and Eq.(14), transforms of multiple objectives into 

a scalar objective function are performed by multiplying 

each objective function by a weighting factor and summing 

up all contributors 

 H F 1 n( ) G( ) ( mi) ( )s = + − → , (15) 

where:   [0,1]. 

For the mathematical meaning, Eq.(15) is an extension 

that modifies the equivalent characteristic according to two 

principles: the principle of the insufficient reason; and the 

principle of the maximum specificity. As represented in 

/30/, when the weighting factor  is changed systematically, 

the solutions of Eq.(15) present the Pareto front of two 

objective functions: F() and G(). 

For solving Eq.(15), a Genetic Algorithm (GA) /29/ is 

applied using built-in functions in Matlab. Then, one 

considers three values of the weighting factor  : 

- when  = 0.5 we get  = 0.476 , (16a) 

- when  = 1 we get  = 0.288 , (16b) 

- when  = 0 we get  = 0.640 . (16c) 

The value  = 0.476 (with  = 0.5) means the balance for 

the weighting factors between objective function F() and 

objective function G(), is applied to calculate central relia-

bility. The values  = 0.288 (with  = 1) and  = 0.640 

(with  = 0) are applied to calculate marginal reliability, 

which is estimator of maximum and minimum of reliability. 

Central and marginal reliability 

Consider the limit state function with a mixture of random 

and fuzzy variables given by 

1 2 1 2( ) ( , , , , , , , )( ) ,F R n n n n mg g x x xx g x x x xx + + += =  (17) 

where: 1 2( , , , )nFx x x x=  are independent fuzzy variables; 

and symmetric triangular fuzzy number ( , )LRi i ix a l= ; xR = 

(xn+1, xn+2, , xn+m) are independent random variables. 

In order to determine the reliability according to tradi-

tional reliability theory, the transform from fuzzy variable 

( , )LRi i ix a l=  to normal random variable xi  N(i,i) accord-

ing to Eq.(16) means: 

- when  = 0.5 : i = ai, i = 0.476 li (18a) 

- when  = 1.0 : i = ai, i = 0.288 li (18b) 

- when  = 0 : i = ai, i = 0.640 li (18c) 

Based on Eq.(18), the notions and the approach to calcu-

lating central and marginal reliability are presented below. 

Central reliability 

As the notion for expectation in the probability theory, 

the central reliability Psc is the belief value of reliability. In 

order to calculate central reliability Psc, the expectation and 

deviation of the normal density distribution, defined by 

Eq.(18a) are applied. Then, we can utilize any techniques in 

the traditional reliability theory, such as First-order reliability 

method (FORM), Second-order reliability method (SORM), 

Cornell reliability index, Hasofer-Lind reliability index, the 

Monte Carlo method, to define structural reliability. 

Marginal reliability 

Marginal reliability [Psmin, Psmax] is interval estimator of 

reliability Ps, such as the notion of interval estimator in the 

probability theory. The ‘true’ value of reliability Pstrue is in 

the range from Psmin to Psmax. Marginal reliability provides 

information for lower and upper reliability, so one can 

estimate the intuitive for reliability. 

In order to determine Psmin and Psmax, we need to solve 

optimisation problems. However, one realizes that most of 

the input data in structural reliability have a certain physical 

meaning, so increasing deviation either increases or 

decreases reliability and vice versa. Hence, the vertex 

method (VT), /31/, can be applied to determine Psmin and 

Psmax with input data and is defined by combinations of 

values in Eqs.(18b) and (18c). 

When VT is applied, we need to solve 2n traditional 

reliability problems, with normal random variables N(i,i) 

defined by Eqs.(18b) and (18c). Values Psmin and Psmax are 

given as follows 

 
1 2 2min ( , , , ) min ns s ssP P P P= , (19a) 

 
1 2 2max ( , , , ) max ns s ssP P P P= , (19b) 

where: 
ksP - reliability value at the k-th combination of 

equivalent random variables, which have an expectation i 

and deviation i, defined by Eqs.(18b) and (18c). 

ILLUSTRATIVE EXAMPLES 

The illustrative examples including mathematical and 

engineering examples are used to demonstrate the accuracy 

and effectiveness of the proposed method. For comparison, 

the results of the proposed method are referred to those of 

the existing methods. Limit state functions in the illustrative 

examples are considered as explicit functions, in order to 

achieve a resemblance to structural analysis methods. 

Example 1 

An engineering example is used in /16/, where stress S  

is a symmetric triangular fuzzy number, strength R is a 

normal random variable. The Cornell reliability index /2, 3/ 

is used in the proposed method. Table 1 displays the relia-

bility of the proposed and the existing method, /16/. 

Comments: It is found from analysis results that the results 

of the central reliability of the proposed method have an 

only small error in comparison with fuzzy reliability /16/ 

(most of the errors are less than 1%, the largest error is 

4.6521%). When the fuzzy threshold H is taken more than 

0.5 (is the reasonable value of H according to /16/), similar 

small errors are given (errors are in the range from 0.0885% 

to 0.7316%). However, the proposed method is more reason-

able than method /16/, because it has overcome the draw-

back of different measurements between the membership 

function of stress S  and random variable of strength R. 
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Table 1. Reliability of the proposed method and the existing method, /16/. 

 S S R R 
Cornell reliability index 

 of proposed method 

Reliability PS of 

proposed method 
Fuzzy reliability Ps in /16/ 

Error (%)  

of reliability Ps 

0 100.230 20.58880 179.17000 17.17900 2.94393 0.998380 0.999991 0.161138 

0.5 100.230 15.31292 179.17000 17.17900 3.43022 0.999698 0.999991 0.029255 

1 100.230 9.26496 179.17000 17.17900 4.04444 0.999974 0.999991 0.001722 

0 111.720 23.80800 179.17000 17.17900 2.29744 0.989203 0.999844 1.064257 

0.5 111.720 17.70720 179.17000 17.17900 2.73397 0.996871 0.999844 0.297326 

1 111.720 10.71360 179.17000 17.17900 3.33153 0.999568 0.999844 0.02759 

0 121.350 29.38880 179.17000 17.17900 1.69852 0.955295 0.985185 3.033949 

0.5 121.350 21.85792 179.17000 17.17900 2.07979 0.981228 0.985185 0.401676 

1 121.350 13.22496 179.17000 17.17900 2.66699 0.996173 0.985185 1.115352 

0 129.610 28.00640 179.17000 17.17900 1.50843 0.934278 0.960186 2.698275 

0.5 129.610 20.82976 179.17000 17.17900 1.83556 0.966789 0.960186 0.687635 

1 129.610 12.60288 179.17000 17.17900 2.32609 0.989993 0.960186 3.104314 

0 138.270 26.34240 179.17000 17.17900 1.30052 0.903288 0.899886 0.378076 

0.5 138.270 19.59216 179.17000 17.17900 1.56963 0.941750 0.899886 4.6521 

1 138.270 11.85408 179.17000 17.17900 1.95957 0.974977 0.899886 8.344498 
 
Example 2 

The hypothetical limit state function with three variables 

is indicated in Example 1 from /20/, 
2 2 3

1 2 2 3 1 3( ) 8.0 0.32( 1) 0.2sin( )g x x x x x x x− − += − − , (20) 

where: x1, x2 are assumed to be independent standard normal  

variables; x3 is assumed to be symmetric triangular fuzzy 

number (0,1)LR. 

The Hasofer-Lind reliability index /2, 3/ is used in the 

proposed method. Table 2 displays the reliability of the pro-

posed and the existing method, /20/. 

Table 2. Reliability of the proposed method and Example 1 in /20/. 

 
Hasofer-Lind reliability index  

of proposed method 

Reliability PS 

of proposed method 

Reliability index 

 of /20/ 

Reliability 

Ps of /20/ 

Error (%) of 

reliability Ps 

0 2.300351 0.989286 2.155 0.984419 0.49438 

0.5 2.300482 0.989290 2.28 0.988696 0.060016 

1 2.3006 0.989293 2.42 0.992240 0.296991 
 
Example 3 

Consider Example 2 of /20/, a cantilever beam subjected 

to a tip load P is shown in Fig. 2. The length L, width b, and 

height h of the beam are random variables with mean 

values of 30 in., 0.8359 in. and 2.5093 in., respectively, and 

the elastic modulus E is a certain variable of 107 psi. 

Standard deviations of length, width, and height of the 

beam are L = 3.0 in., h
 = 0.25 in., b = 0.08 in., respec-

tively. Both L and h are considered as log-normally distrib-

uted and b is considered as a normal distribution. The load 

P = (80, 20)LR (units: lb) is a symmetric triangular fuzzy 

number. The prescribed tip displacement is 0.15 in. 
 

b

h

P

L

 
Figure 2. Cantilever beam subjected to tip load P. 

The limit state function in terms of tip displacement is 

given as follows 

 
3

3

4
( ) 0.15g

PL
x

Ebh
= − . (21) 

The empirical second-order reliability index of Zhao and 

Ono /4, 5/ is used in the proposed method. Table 3 displays 

the reliability of the proposed and the existing method /20/. 

Comments: It is found from analysis results of Example 2 

and Example 3 that the proposed method has an only small 

error in comparison with the solutions /20/, the largest error 

is 5.36 % in Example 2. These errors are emitted from two 

reasons: i) different ideas for determining structural reliabil-

ity with a mixture of random and fuzzy variables of the 

proposed and the method in /20/; ii) accuracy of the tradi-

tional reliability methods. The idea of the proposed method, 

based transformations from fuzzy variable to a family of 

normal random variables, is similar to the idea of /32, 33/, 

based on fitting Johnson distributions to an interval variable. 

In contrast to this idea, the authors /20/ aim at finding the 

worst combinations of interval variables to determine 

extreme reliability values Psmin and Psmax. Because of this, 

the interval with reliability defined in /20/ always is wider 

than marginal reliability in the proposed method. Hence, 

according to the principle of maximum specificity /22, 24, 

25/, the results of the proposed method are more informa-

tive than those in /20/. The second reason that makes errors 

is because the use of Rosenblatt transformation generally 

increases the nonlinearity of limit state function in standard 

normal space, /30/. It affects errors between second-order 

reliability in the proposed method and the Monte Carlo 

simulation in /20/. Indeed, if the Monte Carlo simulation is 

used to calculate reliability in the proposed method, with a 

number of trials Ns = 106, the structural reliability Psmin = 

0.965201, the largest error between the two methods is 

5.35 % (decreases 0.015%). 
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Table 3. Reliability of the proposed method and Example 2 in /20/. 

 
Empirical second-order reliability 

index SORM  of proposed method 

Reliability PS of 

proposed method 

Reliability index 

 of /20/ 

Reliability Ps 

of /20/ 

Error (%) of 

reliability Ps 

0 1.8166 0.965361 1.38 0.916207 5.364961 

0.5 1.8528 0.968044 1.89 0.970621 0.265452 

1 1.8843 0.970238 2.57 0.994915 2.480340 
 
Example 4 

The hypothetical limit state function with four variables 

is indicated in Example 1 of /21/, 

2 2 2 2
1 1 2 2 3 3 4 4( ) 5 2 7 8 10 200g x x x x x x x x x= + + + + − + − −   (22) 

Where: x1, x2 are assumed to be normally distributed with a 

mean of 10.0 and a standard deviation of 2.0. Variables x3 

and x4 are assumed to be symmetric triangular  fuzzy 

numbers (10,5)LR. 

The Hasofer-Lind reliability index is used in the proposed 

method. Table 4 displays results of central reliability Psc 

and marginal reliability [Psmin, Psmax] of the proposed method 

and that of numerical reliability index Pr
(III) and interval 

reliability index Pr
(I), /21/, of the Monte Carlo simulation. 

Table 4. Reliability of the proposed method and Example 1 in /21/.

 
Hasofer-Lind reliability index  

of proposed method 

Reliability PS of 

proposed method 

Reliability Ps of Monte Carlo 

simulation in /21/ 

Error (%) of 

reliability Ps 

0 2.645614471 0.995923 0.999364 0.34433 

0.5 2.520677325 0.994144 0.996130 0.19942 

1 2.421615044 0.992274 0.985445 0.69300 
 
Example 5 

Consider Example 2 of /21/, a roof truss is shown in 

Fig. 3. The top boom and compression bars are reinforced 

by concrete, and the bottom boom and tension bars are of 

steel. The uniform load q (units: N/m) is applied on the roof 

truss. It is assumed to be a symmetric triangular fuzzy 

number (20000,1000)LRq = . Section areas Ac, As; elastic 

modules Ec, Es; lengths of the concrete and steel bars l – are 

independent normal random variables, given in Table 5. 

 

 

Figure 3. Schematic diagram of roof truss, /21/. 

Table 5. Characteristics of random variables of a roof truss. 

Random 

variable 

l 

(m) 

As 

(m2) 

Ac 

(m2) 

Es 

(N/m2) 

Ec 

(N/m2) 

Mean  12 9.8210–4 0.04 11011 21010 

Coefficient of 

variance x 
0.01 0.06 0.12 0.06 0.06 

The perpendicular deflection C of the peak of structure 

node C is not exceeding 3 cm. Applying the methods of 

structural mechanics, the perpendicular deflection C is 

expressed as follows 

 
2 3.81 1.13

2
C

c c s s

ql

A E A E

 
 = + 

 
. (23)  

The limit state function in terms of deflection is given as 

follows 

 
2

2 3.81 1.13
( ) 3 10

2 c c s s

ql
g x

A E A E

−  
=  − + 

 
. (24) 

The empirical second-order reliability index of Zhao and 

Ono /4, 5/ is used in the proposed method. 

Table 6 displays results of central reliability Psc and mar-

ginal reliability [Psmin, Psmax] of the proposed method and 

that of numerical reliability index Pr
(III) and interval reliabil-

ity index Pr
(I), /21/, of the Monte Carlo simulation. 

Table 6. Reliability of proposed method and Example 2 in /21/. 

 
Reliability PS of 

proposed method 

Reliability 

Ps /21/ 

Error (%) of 

reliability Ps 

0 0.9999999962 0.996573 0.34388 

0.5 0.9999999994 0.998780 0.12215 

1 0.9999999999 0.999618 0.03821 

Comments: It is found from analysis results of Example 4 

and Example 5 that the proposed method has an only small 

error in comparison with the solutions /21/. The largest 

error is 0.7 % in Example 4. Although the approach and the 

idea for determining the reliability in the two methods are 

different, the results indicate that central reliability Psc and 

marginal reliability [Psmin, Psmax] of the proposed method 

are similar meaning to numerical reliability index PS
(III) and 

interval reliability index PS
(I) of the method /21/. However, 

the proposed method has more computational efficiency 

and less computational complexity than the method /21/: 

the proposed method requires only 3 runs to determine 

central reliability and marginal reliability, while the PDEM 

in /21/ requires 192 runs to determine reliability indices, but 

also ensures the accuracy of calculated quantities. When 

Monte Carlo simulation is used to calculate reliability in the 

proposed method with a number of trials Ns = 106, the 
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central reliability Psc = 0.998102, and the error between two 

methods is reduced to 0.0679 %. 

Example 6 

Consider a two-story frame structure system in Fig. 4, 

where the two girders are infinitely rigid. Elastic modulus 

E, ceiling height H, width b, and height h of the column are 

assumed to be normal random variables with mean values 

of 2107 kN/m2, 3 m, 0.20 m, 0.30 m, and standard devia-

tion values of 1.2105 kN/m2, 0.1 m, 0.02 m, 0.03 m, in 

respect. Loads P1 and P2 (unit: kN) are assumed to be sym-

metric triangular fuzzy numbers: 1 (10,1)LRP = , 2 (15,2)LRP = . 

 P2

EIEI

EIEI

P1

11
h

b

1-1

H

H

 

Figure 4. Two-story frame structural system. 

By applying the shear forces distribution method, the 

horizontal displacement at the top of the structural system is 

expressed as follows 

 2 1

3(2 )

24
t

P P H

EI

+
 = , (25) 

where: I = bh3/12. 

Because the prescribed horizontal displacement at the 

top of frame structure is 2H/500, the limit state function in 

terms of horizontal displacement at the top is given as 

follows 

 2 1

3(2 )
( )

250 24

P P HH
g x

EI

+
= − . (26) 

The second-order reliability method SORM is used in 

the proposed method, where the values of Psmin, Psmax are 

defined according to Eqs.(19a) and (19c). The derived 

results are compared with the method /20/ and represented 

in Table 7. 

Table 7. Results of proposed method and that of method in /20/. 

Second order 

reliability PSORM 
Proposed method 

Reliability 

according to 

method in /20/ 

Error (%) of 

reliability Ps 

Psc 0.991486 0.990084 0.14163 

Psmin 0.991211 0.978582 1.29060 

Psmax 0.991699 0.996089 0.44078 

Example 7 

Determine the reliability in terms of the stability of the 

frame structural system, as shown in Fig. 5. Consider two 

cases as follows: 

1. Inertia moment I = 215 cm4, length l = 5 m. Elasticity 

modulus E (units: kN/cm2), concentrated load P (units: kN) 

are assumed as symmetric triangular fuzzy numbers 

given as: 4 3(2.1 10 ,2.5 10 )LRE =   , (410,60)LRP = . 

2. Inertia moment I = 215 cm4. Length l (units: m), elastic-

ity modulus E (units: kN/cm2) and concentrated load P 

(units: kN) are assumed as symmetric triangular fuzzy 

numbers given as: (5,0.5)LRl = , 4 3(2.1 10 ,2.5 10 )LRE =   , 

(410,60)LRP = . 

 

Figure 5. The structural frame system. 

According to the displacement method /33/, the struc-

tural frame system is kinematically indeterminate to the 

first degree. The primary structural frame system in terms 

of the displacement method and the bending moment 

diagram are shown in Fig. 6. Set unit bending stiffness is 

i = EI/l. 

 

Figure 6. The primary structural frame system and bending 

moment diagram. 

We get the equilibrium equation for the unknown degree 

of freedom 

 11 2 ]4 1[ ( )r i  = + . (27) 

The equation in terms of stability is given as follows 

 11 20    1( )r =  = − . (28) 

The solution of Eq.(28) is:  = 5.3223. 

The critical load is 

 2

2 2
28.3269cr

EI EI
P

l l
= = . (29) 

The limit state function in terms of stability is given as 

follows 
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2

( ) 28.3269
EI

g x P
l

= − . (30) 

Table 8 displays the results of central reliability and mar-

ginal reliability of the proposed method and that of fuzzy 

reliability of the method in /11/. The FORM is applied in 

terms of case 1 and the SORM is applied in terms of case 2 

in the proposed method. 

Table 8. Results of proposed method and that of method in /11/. 

Case Proposed method 
Method in /11/ 

Psc Psmin Psmax 

1 0.993748 0.968223 0.999981 0.996827 

2 0.958488 0.902323 0.997850 0.892180 

Comments: It is found from analysis results in Example 7 

that the results of fuzzy reliability of the method in /11/ has 

an only small error in comparison with that of reliability 

Psc, Psmin, Psmax of the proposed method. When the variables 

R  and S  are symmetric triangular fuzzy numbers (case 1), 

the method /11/ produces results close to the results of central 

reliability Psc of the proposed method. When the member-

ship functions of R  and S  are nonlinear (case 2), the 

method /11/ produces results close to the results of marginal 

reliability. Because of the different meaning between fuzzy 

reliability /11/ and reliability in the traditional reliability 

theory, the errors have occurred, as were analysed in /33/. 

CONCLUSIONS 

This article presents a practical method for calculating 

structural reliability with a mixture of fuzzy and random 

variables. In order to overcome the different measurements 

of fuzzy and random ones, the novel formulas for determin-

ing normal random variables are given based on innovation 

and combination of the principles of the insufficient reason 

and maximum specificity. From these equivalent random 

ones, the basic structural reliability problems are determined, 

then the two novel notions of structural reliability can be 

applied. The proposed central reliability needs to be 

compared with the prescribed reliability in the structural 

design codes. Simultaneously, the proposed marginal 

reliability should be used to estimate reasonable bounds of 

reliability. Numerical results are utilized to demonstrate the 

accuracy and effectiveness of the proposed method. 
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