
INTEGRITET I VEK KONSTRUKCIJA 

Vol. 19, br. 3 (2019), str. 151–156 

STRUCTURAL INTEGRITY AND LIFE 

Vol. 19, No 3 (2019), pp. 151–156 

 

151 

Monika Sethi1, Pankaj Thakur1, H.P. Singh2 

CHARACTERIZATION OF MATERIAL IN A ROTATING DISC SUBJECTED TO THERMAL 

GRADIENT BY USING SETH TRANSITION THEORY 

KARAKTERIZACIJA MATERIJALA ROTIRAJUĆEG DISKA OPTEREĆENOG 

TEMPERATURNIM GRADIJENTOM PRIMENOM TEORIJE PRELAZNIH NAPONA SETA 

 
Originalni naučni rad / Original scientific paper 

UDK /UDC: 66:539.319 

 

Rad primljen / Paper received: 7.5.2019 

Adresa autora / Author's address: 
1) Depart. of Mathematics, Faculty of Science and Technol., 

ICFAI University Baddi, Solan, India 

email: pankaj_thakur15@yahoo.co.in 
2) Faculty of Science and Technology, ICFAI University 

Baddi, Solan, India 
 
Keywords 

• isotropic structure 

• displacement 

• stress concentrations 

• infinitesimal deformation 

• disc 

Abstract 

The purpose of this paper is to present the study of mate-

rial characterization in a rotating disc subjected to thermal 

gradient by using Seth’s transition theory. It has been 

observed that a disc made of materials as: saturated clay, 

copper, or cast iron, yields at the outer surface at higher 

angular speed as compared to the disc of rubber material 

at steady state temperature, whereas the disc made of clay, 

copper, cast iron, as well as rubber material, yields at a 

lesser angular speed as compared to the rotating disc at 

room temperature. With the introduction of temperature, 

the radial- as well as the hoop stress, both decrease with 

the increased value of temperature at the elastic-plastic 

stage, but with the reverse result obtained for a fully plastic 

case. 

Ključne reči 

• izotropna struktura 

• pomeranje 

• koncentracija napona 

• infinitezimalna deformacija 

• disk 

Izvod 

Cilj ovog rada je prezentacija studije karakterizacije 

materijala rotirajućeg diska koji je opterećen temperatur-

skim gradijentom, primenom teorije prelaznih napona Seta. 

Uočeno je da se kod diska, izrađenog od materijala: zasiće-

na glina, bakar ili liveno gvožđe, javlja tečenje na spoljnjoj 

površini pri većoj ugaonoj brzini rotacije u poređenju sa 

diskom od gume, a pri ravnomernoj raspodeli temperature; 

dok se kod diska od gline, bakra, livenog gvožđa ili čak i od 

gume, javlja tečenje pri manjoj ugaonoj brzini rotacije u 

poređenju sa rotirajućim diskom na sobnoj temperaturi. 

Uvođenjem porasta temperature, radijalni- kao i obimski 

napon, opadaju sa povećanjem temperature pri elastoplas-

tičnom ponašanju materijala, dok je obrnut slučaj kod plas-

tičnog ponašanja. 
 

INTRODUCTION 

Rotating discs form an essential part in the design of 

rotating machinery, namely: rotors, turbines, flywheel, 

compressors, and high-speed gear engines, etc. Use of rotat-

ing discs in machines and structural applications has gener-

ated considerable interest in many problems in the domain 

of mechanics of solids. The solution for thin isotropic discs 

can be found in most of the standard elasticity and plasticity 

textbooks /1-3, 6, 7, 9/. Parmaksizoğlu et al. /10/ analysed 

the problem of plastic stress distribution in a rotating disc 

with a rigid inclusion with a radial temperature gradient 

under the assumptions of Tresca’s yield condition, its asso-

ciated flow rule, and linear strain hardening. To obtain the 

stress distribution, they matched the plastic stresses at the 

same radius r = z of the disc. Seth’s transition theory /6/ 

includes classical macroscopic problem solving in elastic-

ity, plasticity, creep and relaxation and assumes semi-em-

pirical yield conditions. The nonlinear transition region 

through which yielding occurs is neglected. The transition 

theory, used in solving problems of generalized strain 

measure, and the asymptotic solution at critical points of 

differential equations, defining the deforming field, has 

been successfully applied to a large number of problems /8, 

11-40/. In this paper, we investigate the characterization of 

material in a rotating disc subjected to a thermal gradient. 

Results are discussed and depicted graphically. 

MATHEMATICAL MODEL AND GOVERNING 

EQUATION 

Consider a thin rotating disc having constant density 

with the central bore of radius ri and external radius r0. The 

rotating disc is mounted on a rigid shaft as shown in Fig. 1. 

The disc is rotating with angular velocity  about an axis 

perpendicular to its plane and passing through the centre. 

The thickness of the disc is assumed to be constant and is 

taken to be sufficiently small so that the disc is effectively 

in a state of plane stress that is, the axial stress zz is zero. 

Let a uniform temperature 0 be applied at the inner 

surface of the rotating disc. 

Displacement coordinates: for this problem displacement 

components in cylindrical polar co-ordinates are given as /4/ 

 u = r(1 – );  = 0; w = dz, (1) 
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where:  is position function, depending on the value of 

2 2r x y= +  only; and d be a constant. 

 

Figure 1. Geometry of disc with thermal gradient. 

Generalized strain components: generalized strain compo-

nents are given /5/ as 
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where: ′ = d/dr. 

Stress-strain relation: stress-strain relations for thermo-

plastic in an isotropic media are given by, /7/: 

 1 2 ,  ( , 1,2,3)ij ij ij ijI e i j    = + −  = , (3) 

where: eij, ij are strain and stress tensor; I1 = ekk (k = 1,2,3) 

is strain invariant; ij is Kronecker’s delta;  be a 

temperature;  = (3 + 2);  being the coefficient of ther-

mal expansion and ,  are Lame’s constants. Further,  

has to satisfy the heat equation, which gives /7/: 

 
2 0  = . (4) 

Equation (3) for this problem becomes 
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From Eq.(3), strain components in terms of stresses are 

obtained as 
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where: E = (3 + 2)/( + ) is the Young’s modulus and 

 = /2( + ) = 1 – c/2 – c be Poisson’s ratio in terms of 

compressibility factor and Lame’s constants. From Eq.(2) 

and Eq.(5), we get the stresses as 
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where: c = 2/ + 2 be the compressibility factor in terms 

of ,  and r′ = T. 

Equation of equilibrium: equations of equilibrium are all 

satisfied except 

 2 2( ) 0rr
d

r r
dr

  − + = . (8) 

where: rr be the radial stress;  circumferential 

stresses; and  be the constant density of the rotating disc. 

Asymptotic solution at transition points: using Eq.(7) 

and Eq.(12) in Eq.(8), we get a nonlinear differential equa-

tion in  given as 
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where: 0
0

log( / )a b


 = . 

Critical or transition points: transition points of  in Eq.(9) 

are T → 0 and T → . At transition point T → 0 nothing 

is of importance. 

Boundary condition: the rotating disc considered in the 

study is subjected to a temperature gradient field and infini-

tesimal deformation. The inner surface of the disc is assumed 

to be fixed to a shaft so that isothermal conditions prevail 

on it. The inner surface of the disc has a uniform tempera-

ture gradient. Thus, the boundary conditions of the problem 

are 

 R = ri,  u = 0;   r = b, rr = 0  at  r = r0, (10) 

where: u and Trr denote displacement and stress along the 

radial direction applied at the external surface. The tem-

perature field satisfying Eq.(4) and 

 0 =    at  ir r= ,  0 =   at  0r r= , (11) 

where: 0 is constant, is given by 

 0 0

0

log( / )

log( / )i

r r

r r


 = . (12) 
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SOLUTIONS 

It has been shown /4, 5, 8, 11-42/ that the asymptotic 

solution through the principal stress leads from elastic state 

to plastic state at transition point T → . We define the 

transition function Z as 
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By taking the logarithmic differentiation of Eq.(13) with 

respect to r and using Eq.(9), we get 
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(14) 

The asymptotic value from Eq.(14) as T → , and by 

integrating we get 

 1 (2 )cLr− − = , (15) 

where: L is a constant of integration. 

From Eq.(13) and Eq.(15), we have 
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Using Eq.(16) into Eq.(8) and integrating, we get 
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where: M is a constant of integration. 

Substituting Eq.(16) and Eq.(17) in Eq.(6), we get 
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where: c = 2(3 – 2c); and E = 2(3 – 2c)/(2 – c) is the 

Young’s modulus. 

By integrating Eq.(18) with respect to r, we get 
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where: D is a constant of integration. 

From Eq.(19) and Eq.(20), we get 
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Using boundary conditions from Eq.(10) in Eq.(22), we get 
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Substituting Eq.(21) into Eq.(17) and using boundary 

condition from Eq.(10) and Eq.(13), we get 
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By using Eqs.(21), (23) and (24) in Eqs.(16) and (17), in respect, we get 
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Yielding at the initial stage: it has been seen from Eq.(25) 

that   is maximum at the outer surface (that is at r = r0), 

therefore, yielding will take place at the outer surface of the 

rotating disc and Eq.(25) becomes 
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The angular velocity i necessary for the initial yielding stage is given by 
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Fully-plastic stage: the angular velocity f for which the disc becomes fully-plastic (c → 0) at r = ri is given by Eq.(25) as 
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Non-dimensional components: we introduce the following non-dimensional components as: R = r/r0; R0 =ri /r0; r = rr /Y; 

 =  /Y; 1 = E0/Y; and u̅ = uE/Yr0. 

Stresses, displacement and angular speed at initial stage: elastic-plastic stresses, angular velocity and displacement from 

Eqs.(25) and (26) in non-dimensional form become 
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Stresses, displacement and angular speed at fully plastic stage: stresses, displacement and angular speed for the fully-plastic 

state (c → 0), are obtained from Eqs.(28) and (27) as 
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NUMERICAL ILLUSTRATION AND DISCUSSION 

For calculating stresses, strain rates, based on the above 

analysis, the following values have been taken:  = 0.5 (c = 

0, incompressible material, i.e. rubber);  = 0.42857 (c = 

0.25, compressible material, i.e. saturated clay);  = 0.33 

(c = 0.5, compressible materials, i.e. copper); and  = 0.21 

(c = 0.75, compressible materials, i.e. cast iron), /1/, and 

temperature: 1 = 0, 0.3, 0.45, 0.85, respectively. 

Curves are produced in Fig. 2, between angular speeds 

along with the radius ratio R0 = ri/r0 at the initial yielding 

stage R0 = ri/r0. It has been seen that rotating disc made of 

compressible materials (say saturated clay, copper and cast 

iron) and of smaller radii ratio, yields at the inner surface 

with required higher angular speed, as compared to disc 

made of incompressible material (say rubber) at room tem-

perature. With thermal effects, the disc yields in the exter-

nal surface at a lesser angular speed as compared to the 

rotating disc at room temperature. Curves are produced in 

Fig. 3, between angular speed and various radii ratio R0 = 

ri/r0 for fully plastic. The disc of smaller radii ratio requires 

higher angular speed to become fully plastic in comparison 

to rotating disc of higher thickness ratio, and the angular 

speed increases with increase in temperature. 

In Fig. 4, curves are drawn between stresses and radii 

ratio R = r/r0 at elastic-plastic transition state and the fully 

plastic state. It is observed that radial stresses are maximum 

at the inner surface. With the introduction of temperature, 

the radial, as well as the hoop stresses, decrease with 

increased value of temperature at the elastic-plastic state, 

but the reverse result is obtained for a fully plastic case. 
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Figure 2. Graph between angular speed along the radii ratio 

R0 = ri/r0 at initial yielding stage. 

Figure 3. Graph between angular speed along the radii ratio R0 = ri/r0 

for the fully-plastic stage. 

      

 
Figure 4. Graph between stresses along the radii ratio R0 = ri/r0 for: (a) the initial yielding; (b) fully-plastic stage. 
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