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Abstract 

The purpose of this paper is to present the study of 

Lebesgue strain measure in an elasto-plastic shell. Consid-

ered is the problem of a spherical shell under internal and 

external pressure. Results are similar to the Tresca yield 

condition and Hulsurkar when the values of the Lebesgue 

measure are L(1) = 0.5 and L(1) = 1. 

Ključne reči 

• elastičnost 

• plastičnost 

• prelaz 

• ljuska 

• Lebesgova deformacija 

Izvod 

Cilj ovog rada je predstavljanje rezultata merenja 

Lebesgove deformacije u elastoplastičnoj ljusci. Problem se 

bavi sfernom ljuskom opterećenom spoljašnjim i unutraš-

njim pritiskom. Rezultati su slični kao i u slučaju uslova 

tečenja po Treski i Hulsurkaru, kada su vrednosti Lebesg-

ove deformacije L(1) = 0.5 i L(1) = 1. 

INTRODUCTION 

Shells are important for various engineering applica-

tions. Analysis and design of these structures are therefore 

of continuing interest to the scientific and engineering com-

munities. Accurate and conservative assessments of the 

maximum load carried by the structure, as well as the equi-

librium path in both elastic and inelastic range are, there-

fore, of paramount importance in understanding the integ-

rity of the structure. Spherical shells subjected to external 

hydrostatic pressure have been employed as structural 

components of undersea systems, flight vehicles, vacuum 

chambers; chambers fixed to the ocean floor and many 

other applications. For example, complete transparent spher-

ical shells have been enclosed to house undersea transduc-

ers and used as video systems and have been proposed for 

carrying humans to significant depths. Incomplete spherical 

shells have found application as end caps of the cylinder-

cone-sphere systems. Some of these applications have 

involved transparent partial spheres. Karman /1/ analysed 

the buckling of spherical shells by external pressure. Uddin 

/2/ investigated buckling of general spherical shells under 

external pressure. Gupta et al. /3/ discussed the problem of 

elastic-plastic transition in an orthotropic shell under inter-

nal pressure by using Seth transition theory. Blachut /4/ 

analysed composite spheroidal shells under external pres-

sure. Thakur et al. /5/ investigated elastic-plastic stress 

analysis in a spherical shell under internal pressure and 

steady state temperature. Liu /6/ investigated the dynamic 

buckling of spherical shell structures due to subsea colli-

sions. In this paper, we investigate the Lebesgue measure in 

an elasto-plastic shell by using Seth’s transition theory. 

Seth’s transition theory /7/ utilizes the concept of general-

ized strain measure and asymptotic solution at the critical 

points, or turning points of differential equations, defining 

the deformed field, and has been applied to a large number 

of problems successively (Gupta et al. /3, 8/, Seth /7, 9/, 

Thakur et al. /10-30, 32-35/. 

Lebesgue strain measure: the Lebesgue strain measure in 

terms of the principal Almansi strain components is /8/: 
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such that L(0) = 0, L(), L’(0) = 0. 

GOVERNING EQUATIONS 

Let us consider a spherical shell made of compressible 

and incompressible material, with the central bore of radius 

a and external radius b respectively. The thickness of the 

spherical shell is assumed to be constant. 

Displacement coordinates: the components of displacement 

in spherical coordinates (r, , ) are taken as: 

 (1 );  0;  0u r v w= − = = , (2)

 where: u, v, w (displacement components); and  is a func-

tion of r. 

Generalized strain components: the generalized compo-

nents of strain are obtained from Eq.(1) as: 
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where: r, ,  be spherical coordinates; and  be the 

measure; and ’ = d/dr. 

Stress-strain relation: the stress-strain relation for isotropic 

material is given /31/ as 

 1 2 ;  ( , 1,2,3)ij ij ijI e i j  = + = , (4) 
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where: ij and eij are stress and strain tensor;  and  are 

Lame’s constants; ij is Kronecker delta; and I1 = ekk is the 

first strain invariant. Substituting Eq.(3) into Eq.(4), we get 
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Equation of equilibrium: equations of equilibrium are /31/: 
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Critical points: by substituting Eq.(5) into Eq.(6), we obtain 

a nonlinear differential equation with respect to  as: 
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where: r’ = P; and C is the compressibility factor in terms 

of  and  is given C = 2/( + 2). 

Transition points: the transition points of  in Eq.(7) are: 

P = 0, P → -1, and P → . 

SOLUTION OF THE PROBLEM 

For finding the plastic stress distribution, the transition 

function is taken through the principal stresses (see /4, 5, 7, 

8-29, 32-35/) at the transition point P → ∞, we define the 

transition function  as: 
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where:  be the transition function function of r only. 

Taking the logarithmic differentiation of Eq.(8) with respect 

to r and using Eq.(7), and taking the asymptotic value P → 

, then after integration we get 
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where: A1 is a constant of integration. From Eq.(8) and 

Eq.(9), we have 
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where: Y is the yielding stress and (3 – 2C) = Y(2 – C). 

Case 1: Pressure applied at the internal surface 

Let us consider a uniform pressure applied at the internal 

surface of the spherical shell, say pi, and the boundary 

conditions are at rr = –pi at r = a and rr = 0 and r = b as 

shown in Fig. 1. Using boundary condition in Eq.(10), we 

get A1 = b2C. Now substituting the value of constant A1 in 

Eq.(10) and using Eq.(6), we get 
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Figure 1. Spherical shell with applied internal pressure. 

Non-dimensional components: we introduce the following 

non-dimensional components: R = r/b, R0 = a/b, r = rr/Y, 

 =  /Y, P0 = p0/Y, and Pi = pi/Y. Equation (11) in non-

dimensional form becomes: 
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Using the pressure condition, Eq.(12) becomes 
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when C = 0, the stresses from Eq.(13) become 
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Case 2: Pressure applied at the external surface 

Suppose a uniform pressure be applied at the external 

outer surface of the spherical shell, say p0, and the boundary 

conditions are rr = 0 at r = a and rr = –p at r = b as shown 

in Fig. 2. Using boundary condition in Eq.(10), we get A1 = 

a2C. Now substituting the value of constant A1 in Eq.(10) 

and using Eq.(6), we get 
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when C = 0; stresses from Eq.(15) become 
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Figure 2. Spherical shell with applied external pressure. 

The second equation from Eq.(11) is same Tresca yield 

condition, Hulsurkar /6/, when L(1) = ½ and C → 0 (fully 

plastic state) and when L(1) = 1 and C → 0. 

NUMERICAL ILLUSTRATION AND DISCUSSION 

In Fig. 3, curves are drawn between pressure applied at 

the inner and outer boundary condition of the spherical 

shell and various radii ratios R0 = a/b for C = 0, 0.25, 0.75 

and Lebesgue measure L(1) = 0.5, 1, 2. It has been seen that 

spherical shell of compressible material requires a higher 

value of pressure at the centre of the spherical shell as com-

pared to the incompressible material by using inner bound-

ary condition, whereas at the outer boundary condition the 

shell of compressible material requires a higher value of 

pressure at the internal surface. The Lebesgue measure 

increases the pressure value at the inner and outer surface 

for compressible as well as incompressible materials. 

In Figs. 4 and 5, curves are produced between stresses 

and radius ratio R = a/b applied at the internal pressure and 

external pressure conditions and different values of Lebesgue 

measure L(1) = 0.5, 1, 2. It has been observed that hoop 

stresses are maximum at the external surface for compressi-

ble material as compared to incompressible materials. The 

value of hoop stress increases with increased values of the 

Lebesgue measure. 

 

Figure 3. Graph between pressure and radii ratio (R0 = a/b) for different values of Lebesgue measure L(1) = 0.5, 1 and 2. 

inner boundary condition   

outer boundary condition   
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Figure 4. Graph between stresses and radii ratio R = r/b applied at the internal pressure condition. 

          

Figure 5. Graph between stresses and radii ratio R = r/b applied at the external pressure condition. 
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