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Abstract 

The effect of two temperatures on the elastic properties 

of a generalized microstretch thermoelastic solid half-space 

has been investigated. The Green-Naghdi (GN) theory of 

thermoelasticity is adopted in the present research. The 

exact solutions of the problem are obtained in terms of the 

normal modes. Using the normal mode analysis technique, 

the mathematical expressions of displacement components, 

normal stress, couple tangential stress, tangential stress, 

micro stress and the temperature distribution are derived. 

Ključne reči 

• dvotemperaturni 

• Green-Naghdi teorija 

• mikrozatezna termoeleastičnost 

• unutrašnji izvor toplote 

• problem graničnih uslova 

Izvod 

U ovom radu je prikazan uticaj dve temperature na elas-

tične osobine generalisanog mikrozateznog termoelastčnog 

čvrstog poluprostora. Za potrebe istraživanja je isvojena 

Green-Naghdi (GN) teorija termoelastičnosti. Tačna reše-

nja problema su dobijena za normalni mod. Primenom tehni-

ke analize normalnog moda izvedeni su matematički izrazi 

za komponente pomeranja, normalni napon, tangencijalni 

napon, spregnuti tangencijalni napon, mikronapon i raspo-

delu temperature. 

INTRODUCTION 

Eringen /1/ developed the theory of thermo-microstretch 

elastic solids. Microstretch continuum is a model for Bravais 

lattice with basis on the atomic level and two-phase dipolar 

solids with a core on the macroscopic level. Composite 

materials reinforced with chopped elastic fibers, porous 

media whose pores are filled with gas or inviscid liquid, 

asphalt or other elastic inclusions and solid-liquid crystals 

etc. are examples of microstretch solids. Bofill and Quinta-

nilla /2/ verified the existence theorem and some unique-

ness theorems for the microstretch thermoelastic materials 

in the context of linear theory of these materials. Singh and 

Kumar /3/ investigated the results concerning reflection and 

transmission in microstretch thermoelastic materials. Mechan-

ical interactions due to the mechanical forces in micro-

stretch mass diffusive half-space were studied by Kumar 

and Kumar /4/. The elastodynamic interactions due to 

inclined mechanical forces was investigated by Kumar and 

Kumar /5/. Thermomechanical interactions of ultra-short 

laser pulse in generalized microstretch thermoelastic solid 

were investigated by Kumar et al. /6/. Marin and Vlase /7/ 

studied the effect of internal state variables in microstretch 

thermoelasticity. Kumar /8/ investigated the solution of a 

problem in magneto-microstretch thermoelasticity subject-

ed to inclined loads. Kumar et al. /9/ discussed the pulsed 

laser heating effect in a dual phase lag mass diffusion thermo-

elastic medium. 

Chen and Gurtin /10/ developed a theory for elastic 

solids in which the equation of heat conduction involved 

two distinct temperatures named as thermodynamic temper-

ature and conductive temperature. The difference between 

these two temperatures is directly proportional to the 

amount of heat supplied. If no heat is supplied, then these 

two temperatures are identical. This two-temperature model 

is used to find the electron and photon temperature distribu-

tion in laser processing of metals. Youssef /11/ proved the 

uniqueness and existence relations in the theory of two-

temperature generalized thermoelasticity. Youssef and Bas-

siouny /12/ discussed a boundary value problem in piezo-

electric thermoelastic half-space using state space approach 

method. Ezzat and Bary /13/ derived solutions of one-

dimensional problem in magneto-thermoelasticity with two 

temperatures. Kumar and Mukhopadhyay /14/ discussed the 

effects of cylindrical cavity in the generalized theory of two 

temperatures. A theory of thermoelasticity with two distinct 

temperatures and without energy dissipation was presented 

by Youssef and Elsibai /15/. Al-Lehaibi and Eman /16/ 

derived the generalized solutions of thermal shock problem 

of nano beam resonator in generalized thermoelasticity with 

two temperatures. Deswal et al. /17/ presented thermal and 
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mechanical interactions in a micropolar thermoelastic dual 

phase lag medium with two temperatures. They also studied 

the effect of gravity on thermal stresses in the considered 

medium. Sur and Kanoria /18/ presented a 3-dimensional 

deformation problem in thermoelasticity with two tempera-

tures. 

This research deals with the interactions in an isotropic 

microstretch thermoelastic medium with two temperatures 

due to the effect of mechanical forces. The normal mode 

analysis technique is used to obtain the expressions for the 

thermal stresses and the temperature change. 

BASIC EQUATIONS 

The basic equations for homogeneous microstretch thermo-

elastic medium with two temperatures in the absence of 

body force and body couple are: 

stress equation of motion: 
2 *

0 1( ) ( . ) ( )K K T      +   + +  +  +  −  =u u u  (1) 

couple stress equation of motion: 

 2( 2 ) ( ) ( . )K K j    − + +   +  =u    (2)  

equation of balance of stress moments:  

 2 * 0
0 1 0 1( ) . *

2

j
T


      − −  + =u  (3)  

equation of heat conduction:  
2 2

2 * 2 *
1 0 1 02 2

*( . )
T

K K c T T
t t

     
 

 +  = +  +
 

u  (4) 

the constitutive relations are: 
*

0 , , , , 1( ) ( ) ( )ij r r ij i j j i j i ijk k ijt u u u K u T        = + + + + − −  (5) 

 *
, , , 0 ,ij r r ij i j j i mji mm b    = + + + , (6) 

 * *
0 , 0 ,i i ijm j mb    = + , (7) 

 
2(1 )T  = −  . (8) 

Here , , , , , K, 0, 1, 0, b0, are material con-

stants;  is mass density; u = (u1,u2,u3) is the displacement 

vector and  = (1,2,3) is the microrotation vector; ϕ* is 

the scalar microstretch function; T is temperature and T0 is 

the reference temperature of the body chosen; Q is the input 

heat source; j is the microinertia; 1 = (3 + 2 + K)t1; 

1 = (3 + 2 + K)t2; t1, t2 are coefficients of linear ther-

mal expansion; j0 is the microinertia for the microelements; 

tij are components of stress; mij are components of couple 

stress; i
* is the microstress tensor; ij are components of 

strain; kk is the dilatation; ij is Kronecker’s delta function. 

FORMULATION OF THE PROBLEM 

We consider a microstretch thermoelastic medium with 

two temperatures with rectangular Cartesian coordinate 

system 0x1x2x3 with x3-axis pointing vertically downward 

the medium. The geometry of this problem is illustrated in 

Fig. 1. 

Here we write the following form of displacement vector 

and micro-rotational vector for the two-dimensional problem: 

 1 3 2( ,0, ),  (0, ,0)u u = =u  . (9) 

 

Figure 1. Geometry of the problem. 

For further consideration it is convenient to introduce in 

Eqs.(1)-(4) the dimensionless quantities defined by: 
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2 2*
* * *0 1
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1 0 1 01

,,    ij ij

T c
m m

c T Tc c

 
  

 
= =  = . (10) 

According to Helmholtz representation of a vector into a 

scalar and vector potentials, the displacement components 

u1 and u3 are related to non-dimensional potential functions 

 and  as: 

 1 3
1 3 3 1

,  u u
x x x x

      
= − = +

   
. (11) 

Switching the values of u1 and u3 from Eq.(11) in 

Eqs.(1)-(4) and with utility of Eqs.(9) and (10), after sup-

pressing the primes, we obtain: 

 
2 *

1 0a T   − + − = , (12) 

 
2 * 2

6 7 8( ) 0a a a T  − −  + = , (13) 

 2 2 2
9 10 11( ) [ ] 0*a T a a   + − +  + = , (14) 

 
2

2 3 2 0a a   − + = , (15) 

 
2 2

2 4 2 4 5 22a a a   − −  = , (16) 

where: ai are mentioned in the Appendix 1; and 
2 2

2

2 2
1 3x x

 
 = +

 
 is the Laplace operator. 

SOLUTION OF THE PROBLEM 

The solution of the considered physical variables can be 

decomposed in terms of the normal modes as expressed in 

the subsequent equations: 

    ( )* * 1
2 1 3 2 3, , , , ( , , ) , , , , ( )

kx tix x t x e
          −

= . (17) 

Here,  is the angular frequency and k is wave number. 

Making use of Eq.(17), Eqs.(12)-(16) reduce to the fol-

lowing relations: 
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 2 2 2 *
1( ) 0D k a T  − − + − = , (18) 

 
2 2 2

2 2 3 2( ) 0a D a k a  − − + = , (19) 

 
2 2 2 2 2

4 5 2 4( ) ( ) 0D k ga a a D k  − − − − − = , (20) 

 2 2 * 2 2
6 7 8( ) ( ) 0D k a a D k a T − − − − + = , (21) 

 2 2 2 2 2 2
9 10( )( ) (1 ) ( )a D k D k a D k     + − − − − − − +  

*
11 0a + = .  (22) 

The above set of Eqs.(18)-(22) after some simplifications 

yield: 

 6 4 2 0A B C E  + + + =
 

D D D , (23) 

 4 2 0F G  + + =
 
D D , (24) 

where: 
3

d

dx
=D ; and 1 2

5 10

A A
A

k a





+
=

+
, A1 = k2 – k4k5 – k511 + 

a1a7k5 + k6a′10, A2 = a8a11 + a1a8a′10 – a7a11 + a′10k2 + a′10k4, 

1 2

5 10

B B
B

k a





+
=

+
, B1 = a8a11a6 – k2k4 – 11k2 + 11k4k5 + a7k2 + 

a1a8k6a′10 – a1a7k5k2 – k6(a7a11 + a′10k2 + a′10k4), B2 = a7a11k2 + 

a′10k2k4 – 11a8a11 – a1a8a′10k2, C = [k6(a7a11k2 + a′10k2k4) – 

11(a6a8a11 – k2k4) – a1(a7k2k2 + a8a′10k6k2)]/ (k5 + a′10), 

E = (a3a4 – a2a3 – k7)/a2, F = (k3k7 – a3a4k2)/a2, 11 = (1 + 1s), 

1 = 2 + s2. 

Also, ai, i = 1, … 12 are defined in appendix A. 

The solution of the above system of Eqs.(23)-(24) satis-

fying the radiation conditions that *
2( , , , , ) 0     →  as 

x3 →  are given as following: 

 3
3

1

im x
i

i

c e −

=

=  , (25) 

 3
3

*
1

1

im x
i i

i

c e  −

=

=  , (26) 

 3
3

2
1

im x
i i

i

c e  −

=

=  , (27) 

 ( ) 3
5

2
4

, (1, ) im x
i i

i

c e   −

=

=  . (28) 

Here, mi
2 (i = 1, 2, 3) are the roots of Eq.(23) and mi

2 (i = 

4, 5) are the roots of characteristic Eq.(24); 1i = –2i/1i, 

2i = 3i/1i, i = 1, 2, 3 and i = a3/(a2mi
2 – k7), i = 4, 5. 

Here, 1i, 2i, 3i are defined in Appendix B. 

Substituting the values of *
2( , , , , )      from Eqs.(25) 

-(28) in Eqs.(5)-(7), and using Eqs.(9)-(11) and Eq.(17) and 

then solving the resulting equations, we obtain: 

 3
5

33 1
1

im x
i

i

t G e
−

=

=  , (29) 

 3
5

31 2
1

im x
i

i

t G e
−

=

=  , (30) 

 3
5

32 3
1

im x
i

i

m G e
−

=

=  , (31) 

 3
5

*
3 4

1

im x
i

i

G e −

=

=  , (32) 

 3
5

5
1

im x
i

i

T G e
−

=

=  , (33) 

where: Gmi = gmiCi, i, m = 1, 2,  5; Grs and Mr (r, s = 1, 2, 

 5) are described in Appendix C. 

BOUNDARY CONDITIONS 

We consider that normal force and thermal and mass 

concentration sources are acting at the surface x3 = 0 along 

with vanishing of couple stress in addition to thermal and 

mass concentration boundaries considered at x3 = 0. Mathe-

matically this can be written as 

 1( )
33 1

i kx t
t F e

−
= − , 31 0t = , 32 0m = ,  *

3 0 = , 

 1( )
2

3

i kx tT
F e

x

−
=


, (34) 

where: F1 and F2 are the magnitude of the applied forces. 

Substituting the expression of the variables considered 

into these boundary conditions, we can obtain the following 

system of equations, 

 
6

1 2 3 4 5 1 2
1

( , , , , ) ( ,0,0,0, )i i i i i i i
i

G G G G m G c F F
=

= − − . (35) 

The system of Eqs.(35) is solved by using the matrix 

method as follows, 
1

1 11 12 13 14 15 1

2 21 22 23 24 25

3 31 32 33 34 35

4 41 42 43 44 45

5 1 51 2 52 3 53 4 54 5 55 2

0

0

0

c g g g g g F

c g g g g g

c g g g g g

c g g g g g

c m g m g m g m g m g F

−
−     

     
     
     =
     
     
     −    

. (36) 

SPECIAL CASES 

(a) Microstretch thermoelastic solid 

If we neglect the two-temperature effect in Eq.(35), we 

obtain the corresponding expressions of stresses, displace-

ments and temperature for microstretch thermoelastic solid. 

(b) Micropolar thermoelastic solid with two temperatures 

If we neglect the microstretch effect in Eq.(35), we obtain 

the corresponding expressions of stresses, displacements 

and temperature for micropolar thermoelastic medium with 

two-temperatures solid. 

(c) Micropolar thermoelastic solid 

If we neglect the two-temperature effect and the stretch 

effect in the final results, we yield the expressions of ther-

mal stresses for the micropolar thermoelastic medium. 

NUMERICAL RESULTS AND DISCUSSIONS 

The analysis is conducted for a magnesium crystal-like 

material. The values of the constants are (following Dhaliwal 

and Singh /19/):  = 9.41010 Nm-2, K = 1.01010 Nm-2,  = 

1.74103 kgm-3, j = 0.210-19 m2,  = 0.77910-9 N, c* = 1.04 

103 Jkg-1K-1, K* = 1.7106 Jm-1s-1K-1, t1 = 2.3310-5 K-1, t2 = 

2.4810-5 K-1, T0 = 0.298103 K, 0 = 0.02, 1 = 0.01, c1 = 
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2.6510-4 m3kg-1, c2 = 2.8310-4 m3kg-1, a = 2.9104 m2s-2K-1, 

b = 32105 kg-1m5s-2, 1 = 0.04, 0 = 0.03, D = 0.8510-8 kgm-3s, 

j0 = 0.1910-19 m2, 0 = 0.77910-9 N, b0 = 0.510-9 N, 0 = 

0.51010 Nm-2, 1 = 0.51010 Nm-2. 

A dimensionless form of the field variables for the cases 

of microstretch thermoelastic medium with two tempera-

tures (MT 2-tmp) subjected to normal force is presented in 

Figs. 2-8. Values of all physical quantities for both cases 

are shown in the range 0 ≤ x3 ≤ 40. 
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Figure 2. Variation of normal stress. 
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Figure 3. Variation of tangential stress. 
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Figure 4. Variation of couple tangential stress. 
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Figure 5. Variation of microstress. 
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Figure 6. Variation of temperature. 
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Figure 7. Variation of u1. 
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Figure 8. Variation of u3. 

CONCLUSIONS 

The problem consists of investigating displacement com-

ponents, dielectric displacement vector, scalar microstretch, 

temperature distribution and stress components in a micro-

stretch thermoelastic medium with two temperatures subjected 

to mechanical forces. Normal mode analysis is employed to 

express the results. Theoretically obtained field variables 

are also depicted graphically. Analysis of results permits 

some concluding remarks: 

1. It is clear from the figures that all the field variables 

have nonzero values only in the bounded region of space 

indicating that all the results are in agreement with the 

various theories of thermoelasticity. 

2. The trend of variation of physical quantities show simi-

larity with the results of Kumar and Kumar, /9/, after 

neglecting the two-temperature effect. 
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