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Abstract 

The strain energy release rate for lengthwise circular 

cylindrical cracks in round bars which are functionally 

graded in radial direction is derived by applying linear 

elastic fracture mechanics. The solution obtained is valid 

for a crack located arbitrarily in the radial direction of the 

bar cross-section. Besides, the modulus of elasticity and the 

shear modulus can be distributed arbitrarily in the radial 

direction. The functionally graded bars are loaded by axial 

forces, bending and torsion moments. The derived solution 

is applied to analyse the strain energy release rate for a 

lengthwise crack in a clamped functionally graded bar 

configuration. The external load of the clamped bar consists 

of an axial force and a torsion moment applied at the free 

end of the internal crack arm and a bending moment applied 

at the free end of the bar. In order to verify the solution, the 

strain energy release rate in the clamped bar is determined 

also by considering the balance of energy and by applying 

the compliance method. The influence of various factors 

such as crack location in the radial direction, the material 

gradient and loading conditions on strain energy release 

rate in the clamped bar configuration are investigated and 

discussed. 

Ključne reči 

• funkcionalni kompozitni materijal 

• podužni lom 

• okrugli štap 

• linearno elastično ponašanje 

Izvod 

Primenom linearno elastične mehanike loma, izvedena je 

brzina oslobađanja deformacione energije kod podužnih 

kružnih cilindričnih prslina u okruglim štapovima od funk-

cionalnog kompozitnog materijala sa slojevima u radijal-

nom pravcu. Dobijeno rešenje važi za prslinu proizvoljno 

lociranu u radijalnom pravcu preseka štapa. Osim toga, 

modul elastičnosti i modul klizanja su takođe proizvoljni u 

radijalnom pravcu. Štapovi od funkcionalnog kompozita su 

opterećeni aksijalnim silama i momentima savijanja i torzije. 

Izvedeno rešenje je primenjeno u analizi brzine oslobađa-

nja deformacione energije podužne prsline kod uklještenog 

štapa od funkcionalnog kompozita. Spoljašnja opterećenja 

uklještenog štapa su aksijalna sila i moment uvijanja, koji 

deluju na slobodnom kraju kraka unutrašnje prsline, i 

moment savijanja, koji deluje na slobodnom kraju štapa. 

Radi provere rešenja, brzina oslobađanja energije defor-

macije uklještenog štapa se određuje razmatranjem ravno-

teže energije i primenom metode popustljivosti. Razmotreni 

su i diskutovani uticaji pojedinih faktora, kao što su lokaci-

ja prsline u radijalnom pravcu, gradijent materijala i uslovi 

opterećenja na brzinu oslobađanja deformacione energije 

kod uklještenog štapa. 

INTRODUCTION 

Functionally graded materials are inhomogeneous com-

posites of two or more constituent materials. The most 

important feature of functionally graded materials is the 

smooth variation of their properties along one or more 

directions in the solid, /1-7/. Variation of material proper-

ties can be tailored in order to improve the performance of 

functionally graded structural members and components to 

externally applied loads. In recent years, functionally graded 

materials have been frequently used as advanced structural 

materials in various engineering applications in aerospace, 

nuclear reactors, airplane industry and bioengineering. 

Accessing of structural integrity, reliability and safety of 

functionally graded structural members and components is 

closely related with their fracture behaviour. Therefore, 

crack problems of functionally graded materials are an 

important subject of research that continues to attract the 

attention of academic community around the globe /8-12/. 

Basic problems of fracture mechanics of functionally 

graded materials have been discussed in /8/. Methods for 

solving different crack problems in functionally graded 

materials have been developed. The fracture analyses per-

formed and the results obtained can be useful for material 

scientists and design engineers which work in the field of 

functionally graded materials.  

Various studies of fracture in functionally graded com-

posite materials have been reviewed in /9/. Analyses of 

cracks oriented parallel or perpendicular to the direction of 

material gradient have been considered. Solutions for non-
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straight cracks have also been discussed. Investigations of 

fracture behaviour of functionally graded materials under 

static and cyclic fatigue crack loading conditions by apply-

ing linear elastic fracture mechanics have been summarized. 

An engineering method for predicting the strength of 

functionally graded structural members containing cracks 

has been developed in /10/. The method has been applied to 

a functionally graded linear elastic beam subjected to three-

point bending. The beam under consideration has a rectan-

gular cross-section and is functionally graded in the thick-

ness direction. A functionally graded linear elastic plate 

loaded in tension has also been analyzed. 

The present paper is focused on deriving a solution to the 

strain energy release rate for a lengthwise circular cylindri-

cal crack in functionally graded round bars exposed to 

external mechanical loading which induces axial forces and 

bending and torsion moments. It is assumed that the bars 

are functionally graded in radial direction. A solution to the 

strain energy release rate is obtained for arbitrary variation 

of the modulus of elasticity and the shear modulus within 

the radial coordinate. The solution obtained can be used for 

a cylindrical crack located arbitrary in radial direction. The 

solution is applied to analyse the strain energy release rate 

for a lengthwise cylindrical crack in a clamped functionally 

graded round bar. The strain energy release rate in the 

clamped bar is determined also by considering the balance 

of energy for verification. A further verification is per-

formed by applying the compliance method. The influence 

of loading conditions, material properties and crack loca-

tion on the strain energy release rate in the clamped bar is 

investigated and discussed. 

SOLUTION PROCEDURE TO THE STRAIN ENERGY 

RELEASE RATE  

In order to derive the strain energy release rate, a portion 

of a functionally graded round bar containing the crack 

front is considered (Fig. 1). 

The bar cross-section is a circle of radius r2. The axial 

force and torsion and bending moments in the bar cross-

section ahead of the crack front are denoted by N3, T3 and 

M3, respectively (Fig. 1). The lengthwise crack is a circular 

cylindrical surface of radius r1. Thus, the crack front is a 

circle of radius r1. In the present analysis, the internal crack 

arm is treated as a round bar of radius r1. The external crack 

arm is treated as a bar of ring-shaped cross-section of inter-

nal radius r1, and external radius r2. 

 

Figure 1. Portion of a round bar with the crack front position (1- 

before increase of lengthwise crack, 2-after increase of the 

lengthwise crack). 

According to linear elastic fracture mechanics, the strain 

energy release rate, G, for the crack problem in Fig. 1 is 

given as 

 
cf

U
G

l a


=−


, (1) 

where: U is the change of strain energy; lcf is the length of 

crack front; a is a small increase in crack length. The 

change of strain energy due to the increase of crack length 

is expressed as 

1 2 2

1

2 2 2

01 02 03
0 0 0 0 0

r r r

r

U a u rdrd a u rdrd a u rd rd
  

   = + −       (2) 

where the first and second terms in the right-hand side of 

the equation are the strain energies stored-up in portions of 

length a, in the two crack arms behind the crack front; the 

third term is the strain energy in the uncracked bar portion 

of length a, ahead of the crack front; u01, u02 and u03 are, 

respectively, strain energy densities in internal and external 

crack arms and in the uncracked bar portion ahead of the 

crack front. 

The length of crack front is calculated as 

 12cfl r= . (3) 

By substituting Eqs.(2) and (3) in Eq.(1), the strain 

energy release rate is expressed as 

1 2 2

1

2 2 2

01 02 03
1 0 0 0 0 0

1
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r r r

r

G u rdrd u rdrd u rdrd
r

  
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

 
 = + −
 
 
      . (4) 

The strain energy density in the internal crack arm is 

written as 

 01 01 01u u u = + , (5) 

where: u01 and u01 are the densities of strain energy due to 

the axial force and bending moment and of the torsion 

moment, in respect. The strain energy density due to axial 

force and bending moment is written as 

 01
1

2
u  = , (6) 

where:  is the normal stress;  is the strain. The normal 

stresses are obtained by Hooke’s law 

 E = , (7) 

where: the modulus of elasticity varies continuously in the 

radial direction, 

 ( )E E r= . (8) 

 

Figure 2. Cross-section of the internal crack arm behind the crack 

front (position of neutral axis is marked by n1–n1). 
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According to Bernoulli’s hypothesis for plane sections,  
is distributed linearly along the thickness of the internal 

crack arm 

 
11 1 1( )nz z = − , (9) 

where 

 1 1 1r z r−   . (10) 

It should be noted that Bernoulli’s hypothesis is applica-

ble since bars of a high length to thickness ratio are under 

consideration in the present paper. In Eq.(9), 1 is the 

curvature of the internal crack arm, z1n1 is the coordinate of 

the neutral axis (Fig. 2).  

It is obvious that the neutral axis shifts from the centroid 

since the internal crack arm is loaded by bending moment 

and axial force. By substituting Eqs.(7) and (9) in Eq,(6), 

one arrives at 

 
1

2

01 1 1 1
1

( )
2

nu E z z  = −
 

, (11) 

where: E is a function of the radial coordinate. 

The curvature and the neutral axis coordinate are deter-

mined by using the following equations for equilibrium of 

the cross-section of internal crack arm: 

 

1

1
A

N dA=  , (12) 

 

1

1 1
A

M z dA=  , (13) 

where: A1 is the area of the internal crack arm cross-section; 

N1 and M1 are, respectively, the axial force and the bending 

moment in the cross-section of the internal crack arm behind 

the crack front. By using the designations in Fig. 2, 

Eqs.(12) and (13) are expressed in polar coordinates as 

 
1 2

1
0 0

r

N rdrd


 =   , (14) 

 
1 2

2
1

0 0

sin
r

M r drd


  =   , (15) 

where:  is obtained by Eq.(7). In order to facilitate the 

integration in Eqs.(14) and (15), the distribution of length-

wise strains, Eq.(9), is rewritten as 

 
11 1( sin )nr z  = − , (16) 

where: the polar angle, , is defined in Fig. 2. 

However, there are three unknowns: 1, z1n1 and M1, in 

Eqs.(14) and (15). Therefore, two other equations are 

worked-out by considering the equilibrium of the cross-

section of external crack arm behind the crack front 

 
2

1

2

2
0

r

g
r

N rdrd


 =   , (17) 
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2
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r

g
r

M r drd


  =   , (18) 

where: N2 and M2 are, respectively, the axial force and the 

bending moment in the cross-section of external crack arm 

behind the crack front. The normal stress in the external 

crack arm, g, is obtained by the Hooke’s law 

 g gE = , (19) 

where: lengthwise strain, g, is distributed linearly along the 

height of the external crack arm cross-section, 

 
22 2( sin )g nr z  = − . (20) 

In Eq.(20), 2 and z2n2 are the curvature and the coordi-

nate on neutral axis, respectively. Since the axial force and 

the bending moment generate mode II crack loading condi-

tions, the curvature of external crack arm is the same as the 

curvature of internal crack arm, 

 2 1 = . (21) 

Also, it is obvious that 

 1 2M M M+ = , (22) 

where: M is the bending moment in the bar cross-section 

behind the crack front. Thus, the bending moment in the 

external crack arm is expressed as 

 2 1M M M= − . (23) 

Equations (14), (15), (17), (18), (21) and (23) can be 

solved with respect to 1, z1n1, 2, z2n2, M1 and M2 for arbi-

trary continuous variation of the modulus of elasticity with 

the radial coordinate. After that, 1 and z1n1 are substituted 

in Eq.(11) to calculate u01. 

The strain energy density due to the torsion of internal 

crack arm is written as 

 01
1

2
u  = , (24) 

where:  and  are the shear stress and strain, respectively. 

The shear stress is obtained by applying the Hooke’s law 

 S = , (25) 

where the shear modulus, S, varies arbitrary with the radial 

coordinate 

 ( )S S r= . (26) 

Since we assume validity of the Bernoulli’s hypothesis, 

the shear strains are distributed linearly along the radius 

 

1

dr
r


 = , (27) 

where: 

 10 r r  . (28) 

In Eq.(27), d is the shear strain at the periphery of the 

internal crack arm. The following equation for equilibrium of 

the internal crack arm cross-section is used to determine d, 

 

1

1
A

T rdA=  , (29) 

where: T1 is the torsion moment in the internal crack arm 

cross-section behind the crack front. Equation (29) is ex-

pressed in polar coordinates as 

 
1 2

2
1

0 0

r

T r drd


 =   , (30) 

where:  is obtained by Eq.(25). Equation (30) can be used 

to determine d for arbitrary continuous variation of the 

shear modulus with the radial coordinate. 

By substituting Eqs.(25) and (27) in Eq.(24), one arrives at 

 

2
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1

1

2
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r
u S

r
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, (31) 
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where: S is a continuous function of the radial coordinate; 

d is obtained from Eq.(30). 

The final expression for strain energy density in the inter-

nal crack arm cross-section behind the crack front is obtained 

by substituting Eqs.(11) and (31) in Eq.(5). 

Equation (5) is applied also to calculate the strain energy 

density in the external crack arm cross-section behind the 

crack front. For this purpose, z1n1 in Eq.(11) is replaced 

with z2n2. Also, d and r1 in Eq.(31) are replaced with g and 

r2, respectively. The shear strain at the periphery of the exter-

nal crack arm, g, is determined from the following equilib-

rium equation of the external crack arm cross-section: 

 
2

1

2
2

2
0

r

g
r

T r drd


 =   , (32) 

where: T2 is the torsion moment in the external crack arm 

behind the crack front. The shear stress in the external crack 

arm, g, is obtained by the Hooke’s law 

 
2

g
g Sr

r


 = . (33) 

The strain energy density in the bar cross-section ahead 

of the crack front is obtained by Eq.(5). For this purpose, 1 

and z1n1 in Eq.(11) are replaced with 3 and z3n3, respec-

tively (3 and z3n3 are the curvature and the coordinate of 

neutral axis in the bar cross-section ahead of the crack front). 

Equations (14) and (15) are used to determine 3 and z3n3. 

For this purpose, N1, M1, r1 and  are replaced with N3, M3, 

r2 and n, respectively. It is obvious that 

 3 1 2N N N= + , (34)  

 3 1 2M M M= + . (35) 

The normal stress, n, in the bar cross-section ahead of 

the crack front is found by Hooke’s law Eq.(7). The length-

wise strain is found by replacing 1 and z1n1 in Eq.(9) with 

3 and z3n3, respectively. In Eq.(31), d and r1 are replaced 

with n and r2. The shear strain, n, at the periphery of the 

bar is determined by using Eq.(30). For this purpose, T1, r1 

and  are replaced with T3, r2 and n, respectively. Obviously, 

 3 1 2T T T= + . (36) 

The shear stress, n, is expressed by Hooke’s law Eq.(25). 

The shear strain is obtained by replacing d and r1 in Eq.(27) 

with n and r2, respectively. 

The strain energy release rate is calculated by substitut-

ing strain energy densities in Eq.(4). It should be mentioned 

that the solution to strain energy release rate derived in the 

present paper can be applied for functionally graded round 

bar configurations with arbitrary variation of modulus of 

elasticity and shear modulus with the radial coordinate. 

NUMERICAL EXAMPLE 

In the present section of the paper, the strain energy 

release rate for a lengthwise circular cylindrical crack in a 

clamped functionally graded round bar is analysed by 

applying the solution obtained in the previous section. 

The round bar under consideration is depicted in Fig. 3. 

There is a lengthwise crack of length a in the bar. The 

radius of bar cross-section is r2. The internal crack arm has 

a circular cross-section of radius, r1. The bar length is l. The 

bar is clamped at its right-hand end. 

 

Figure 3. Geometry and loading of a clamped round bar with a 

lengthwise cylindrical crack. 

External loading includes one bending moment, M, 

applied at the free end of the bar, one axial force, F, and 

one torsion moment, T, applied at the free end of internal 

crack arm. It is apparent that the internal crack arm is 

loaded by axial force and by torsion and bending moments, 

while the external crack arm is loaded in pure bending since 

M is distributed on both crack arms. The uncracked bar 

portion, a  x  l, is loaded by axial force and by torsion 

and bending moments. Therefore, 

 1N F= , 1T T= , (37) 

 2 0N = , 2 0T = , (38) 

 3N F= , 3T T= . (39) 

The bending moments in the two crack arms, M1 and M2, 

are obtained from Eqs.(14), (15), (17), (18), (21) and (23). 

For the functionally graded round bar shown in Fig. 3, it 

is assumed that the modulus of elasticity and the shear 

modulus vary continuously with the radial coordinate, accord-

ing to the following power laws: 

 0 0
2

( )

m

t
r

E E E E
r

 
= + −  

 
, (40) 

 0 0
2

( )

p

t
r

S S S S
r

 
= + −  

 
, (41) 

where: 20 r r  . (42) 

In Eqs.(40) and (41), E0 and S0 are the values of modulus 

of elasticity and shear modulus at the centre of bar cross-

section, respectively; Et and St are values of the modulus of 

elasticity and shear modulus at the periphery of the bar, 

respectively. The material properties, m and p, govern the 

distribution of E and S in the radial direction, respectively. 

In order to calculate the strain energy density in the 

internal crack arm cross-section behind the crack front, 

first, 1, z1n1, 2, z2n2, M1 and M2 are determined. For this 

purpose, by substituting Eq.(40) in Eqs.(14), (15), (17) and 

(18) and taking into account Eqs.(21) and (23), one obtains 

the following four equations with unknowns, 1, z1n1, z2n2 

and M1: 
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1
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M M E r r

m
   

+ +−
− = − +

+
, (46) 

where:  = (Et – E0)/ 2
mr . Equations (43)-(46) are solved with 

respect to 1, z1n1, z2n2 and M1 by using the MatLab com-

puter program. Then, u01 is derived by substituting Eq.(40), 

1 and z1n1 in Eq.(11). 

Further, by substituting Eqs.(25), (27) and (41) in (30), 

one arrives at 

 

3
3 1

1 0 1
1

2
2 4

p

d d

r
T S r

p
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+

= +
+

, (47) 

where:  = (St – S0)/ 2
p

r . From Eq.(47), one derives 

 
33

1 0 1 12 ( 4) /[ ( 4) 4 ]
p

d T p S r p r   +
= + + + . (48) 

After that, u01 is determined by substituting Eq.(41) in 

Eq.(31). The strain energy density in the internal crack arm 

cross-section behind the crack front is found by substituting 

u01 and u01 in Eq.(5). 

The strain energy density in the cross-section of external 

crack arm behind the crack front is determined in the 

following way. First, z1 and z1n1 are replaced, respectively, 

with z2 and z2n2 in Eq.(11). Also, Eq.(40) is substituted in 

Eq.(11). Since the external crack arm is loaded in pure 

bending, u02 = u02. 

Equations (43) and (44) are used to determine 3 and 

z3n3. For this purpose, after replacing N1, M1, r1, 1 and z1n1 

with N3, M3, r2, 3 and z3n3, Eqs.(43) and (44) are solved 

with respect to 3 and z3n3 by using the MatLab computer 

program. Then, u03 is obtained by replacing z1, z1n1 and 1 

with z3, z3n3 and 3 in Eq.(11). Equation (31) is applied to 

calculate u03. For this purpose, d and r1are replaced with n 

and r2, respectively. Equation (48) is used to determine n. 

For this purpose, T1, r1 and d are replaced, respectively, 

with T3, r2 and n. The strain energy density in the bar cross- 

section ahead of the crack front is written as u03 = u03 + u03 . 

The strain energy release rate for the crack problem in 

Fig. 3 is derived by substituting u01, u02 and u03 in Eq.(4). 

The result is 
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z

m m


  

 
+ + + +


= − + − +



− −
+ +
+ +


 

3 3

2 4 2
4 2 2 23 2 2

4 0 2 0 23 3

1
2

2 4 4 2

m m

n n

r r
E r E z r z

m m


    

+ + 
 = + + +
 + +
 

, 

 

2
2 2 2

5 0 2
1

4 4

p

n

r
S r

p
  

+ 
 = +
 +
 

. 

In order to check Eq.(49), the strain energy release rate is 

obtained also by analysing the energy balance. For this pur-

pose, a small increase of the crack length, a, is assumed. 

The energy balance is written as 

 cf
U

F u M T a Gl a
a

    


+ + = +


, (50) 

where: u and  are, respectively, increases in lengthwise 

displacement and angle of twist of the free end of the inter-

nal crack arm;  is the increase of the angle of rotation of 

free end of the bar; U is the strain energy cumulated in the 

bar. From Eq.(50), one obtains 

 
1

cf cf cf cf

F u M T U
G

l a l a l a l a

    
= + + −

   
. (51) 

By substituting Eq.(3) in Eq.(51), one arrives at 

 
1

1

2

u U
G F M T

r a a a a

 



    
= + + − 

    
. (52) 

The integrals of Maxwell-Mohr are used to determine u, 

 and . The result is 

 ( )u a l a  = + − , (53) 

 1 3( )a l a  = + − , (54) 

 
1 2

( )d na l a
r r

 
 = + − . (55) 

In Eq.(53),  and  are the lengthwise strains at the 

centres in cross-sections of internal crack arm and the 

uncracked beam portion, respectively. By substituting z1 = 0 

in Eq.(9),  is written as 

 
11 1nz = − . (56) 

Similarly,  is obtained as 

 
33 3nz = − . (57) 

The strain energy cumulated in the bar is found by inte-

grating strain energy densities in the volume of the internal 

and external crack arms and the uncracked bar portion 

1 2 2

1

2 2 2

01 02 03
0 0 0 0 0

( )
r r r

r

U a u rdrd a u rdrd l a u rdrd
  

  = + + −      . (58) 

By substituting Eqs.(53)-(58) in Eq.(52), one derives the 

following expression for the strain energy release rate: 

 
1 31 1 3 3 1 3

1

1 2 3 4 5
1 2

1
( ) ( )

2

.

n n

d n

G F z z M
r

T
r r

   


 
    

= − + + − +


 
+ − − − − + +  

  

 (59) 
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It should be noted that strain energy release rates calcu-

lated by Eq.(59) are exact match of these obtained by 

Eq.(49). This fact is a verification of strain energy release 

rate analyses developed in the present paper. 

The compliance method is used also to verify the solu-

tion to the strain energy release rate Eq.(49). According to 

the compliance method, the strain energy release rate is 

written as 

 2 2 21

2

F M T

cf

dC dC dC
G F M T

l da da da

 
= + + 

 
, (60) 

where the compliances of the bar are expressed as 

 F
u

C
F

= , MC
M


= , TC

T


= . (61) 

By substituting Eqs.(3), (53)-(55) in Eq.(60), one arrives at 

1 31 1 3 3 1 3
1 1 2

1
( ) ( )

4

d n
n nG F z z M T

r r r

 
   



  
= − + + − + −  

   

. (62)  

Strain energy release rates obtained by Eq.(62) match 

exactly these calculated by Eq.(49) which is also a verifica-

tion of the analysis developed in the present paper. 

Parametric investigations are performed in order to eval-

uate the influence of crack location in radial direction, mate-

rial properties and loading conditions on strain energy 

release rate for the crack problem shown in Fig. 3. For this 

purpose, calculations of strain energy release rate are carried 

out by Eq.(49). The results obtained are presented in non-

dimensional form by using the formula GN = G/(E0r2). It is 

assumed that l = 0.2 m, r2 = 0.003 m, F = 500 N, M = 

20 Nm and T = 30 Nm.  

 

Figure 4. Strain energy release rate in non-dimensional form 

plotted against Et/E0 ratio (curve 1 at r1/r2 = 0.25; curve 2 at 

r1/r2 = 0.50; and curve 3 at r1/r2 = 0.75). 

The effect of crack location in the radial direction on 

strain energy release rate is analysed. For this purpose, r1/r2 

ratio which characterizes the crack location in the radial 

direction is introduced. The strain energy release rate is 

calculated at three r1/r2 ratios. The results obtained are illus-

trated in Fig. 4 where the strain energy release rate in non-

dimensional form is plotted against Et/E0 ratio at three r1/r2 

ratios for S0/E0 = 0.8, St/S0 = 0.7, m = 0.4 and p = 0.5. The 

curves in Fig. 4 indicate that the strain energy release rate 

decreases with increasing of r1/r2 ratio. Figure 4 shows also 

that increase of Et/E0 ratio leads to decrease in the strain 

energy release rate. This finding is attributed to the increase 

of the bar stiffness. 

The influence of S0/E0 ratio and material property m, on 

strain energy release rate in the functionally graded bar 

shown in Fig. 3 is evaluated. For this purpose, calculations 

of strain energy release rate are performed at various S0/E0 

ratios for three values of m. The strain energy release rate is 

plotted in non-dimensional form against S0/E0 ratio at 

r1/r2 = 0.25 in Fig. 5. One can observe in Fig. 5 that the 

strain energy release rate decreases with increasing of S0/E0 

ratio. Increase of m also leads to decrease of the strain 

energy release rate. 

 

Figure 5. Strain energy release rate in non-dimensional form 

plotted against S0/E0 ratio (curve 1 at m = 0.5; curve 2 at m = 0.7; 

and curve 3 at m = 0.9). 

The effect of material property p, and St/S0 ratio on the 

strain energy release rate is elucidated in Fig. 6 where the 

strain energy release rate in non-dimensional form is 

plotted against St/S0 ratio at three values of p for r1/r2 = 

0.25. It can be observed that the strain energy release rate 

decreases with increasing of St/S0 ratio (Fig. 6). The strain 

energy release rate decreases also with increasing of p. 

 

Figure 6. Strain energy release rate in non-dimensional form 

plotted against St/S0 ratio (curve 1 at p = 0.4, curve 2 at p = 0.6 

and curve 3 at p = 0.8). 
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The influence of loading conditions on the strain energy 

release rate is investigated too. For this purpose, the strain 

energy release rate in non-dimensional form is plotted against 

T/F ratio at three T/M ratios in Fig. 7 for r1/r2 = 0.25. Figure 

7 shows that the strain energy release rate increases with 

increasing of both T/F and T/M ratios. 

 

Figure 7. Strain energy release rate in non-dimensional form 

plotted against T/F ratio (curve 1 at T/M = 0.5; curve 2 at T/M = 

1.0 and curve 3 at T/M = 1.5). 

CONCLUSIONS 

A solution procedure to the strain energy release rate for 

lengthwise cracks in functionally graded round bars is 

developed by applying methods of linear elastic fracture 

mechanics. The bars are loaded by axial forces and bending 

and torsion moments. The lengthwise cracks under consid-

eration are circular cylindrical surfaces. The internal crack 

arm is treated as a bar of circular cross-section. The external 

crack arm is treated as a bar of ring-shaped cross-section. A 

solution to the strain energy release rate is derived assum-

ing that the crack is located arbitrarily in radial direction. 

The solution holds for bars which are functionally graded in 

the radial direction (modulus of elasticity and shear modu-

lus vary continuously in the radial direction). 

The solution is applied to analyse the strain energy 

release rate for a lengthwise cylindrical crack in a clamped 

functionally graded round bar. Power laws are used to 

describe the distribution of the modulus of elasticity and the 

shear modulus in radial direction. The bar is loaded by an 

axial force and a torsion moment applied at the free end of 

the internal crack arm and a bending moment applied at the 

free end of the bar. The strain energy release rate in the 

clamped functionally graded round bar is derived also by 

considering the energy balance and by applying the compli-

ance method for verification. Effects of the crack location 

in the radial direction, material gradients and the loading 

conditions on strain energy release rate are elucidated. It is 

found that the strain energy release rate decreases with 

increasing of the radius of internal crack arm cross-section. 

Material gradients in the radial direction are characterized 

by Et/E0 and St/S0 ratios. Analysis reveals that the strain 

energy release rate decreases with increasing of Et/E0 and 

St/S0 ratios. The increase of m and p leads also to decrease 

of strain energy release rate. The loading conditions are 

characterized by T/F and T/M ratios. The investigation 

shows that the strain energy release rate increases with 

increasing of T/F and T/M ratios. 

The solution derived in the present paper can be applied 

to calculate the strain energy release rate when analysing 

lengthwise circular cylindrical cracks in round bars which 

are functionally graded in the radial direction. The results 

obtained may be useful in structural design of functionally 

graded round bars when considering their lengthwise frac-

ture behaviour. 
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