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Abstract 

In this paper, the effect of vertical AC electric field on 

the onset of electrohydrodynamic thermal instability in a 

horizontal layer of an elastico-viscous nanofluid saturated 

by a porous medium stimulated by the dielectrophoretic 

force due to the variation of dielectric constant with tem-

perature is investigated. Walters’ (model B') elastico-viscous 

fluid model is used to describe rheological behaviour of 

nanofluid and for porous medium, the Darcy model is 

employed. The model used for nanofluid incorporates the 

effects of thermophoresis and Brownian diffusion. It is 

assumed that nanoparticle flux is zero on the boundaries. 

Linear stability analysis based on perturbation theory and 

normal mode analysis method is applied. The resulting eigen-

value problem is solved for isothermal free-free boundaries 

analytically and numerically by using the Galerkin method. 

For the case of stationary convection, it is observed that 

Walters’ (model B') elastico-viscous nanofluid behaves like 

an ordinary nanofluid. The oscillatory convection does not 

exist under the realistic boundary conditions. 

Ključne reči 

• nanofluid 

• električno polje naizmenične struje 

• Rejlejev broj 

• Valters (model B) 

• elektrohidrodinamika 

Izvod 

U radu je istražen uticaj vertikalnog električnog polja 

naizmenične struje na elektrohidrodinamičku termičku nesta-

bilnost u horizontalnom sloju elastoviskoznog nanofluida 

zasićenog poroznom sredinom stimulisanom dielektroforez-

nom silom, usled promene dielektrične konstante sa tempe-

raturom. Primenjen je Valters (model B) elastoviskozni 

model fluida za opisivanje reološkog ponašanja nanofluida, 

a Darsi model za poroznu sredinu. Model nanofluida sadrži 

efekte termoforeze i Braunove difuzije. Pretpostavlja se da 

je fluks nanočestica jednak nuli na granicama. Urađena je 

analiza linearne stabilnosti na bazi teorije perturbacije i 

analiza normalnog moda. Rezultujući problem sopstvenih 

vrednosti je rešen analitički i numerički za izotermalne slo-

bodne-slobodne granice primenom metode Galerkina. U 

slučaju stacionarne konvekcije, uočava se da se Valters 

(model B) elastoviskozni nanofluid ponaša kao običan 

nanofluid. Oscilatorna konvekcija ne postoji u uslovima 

realističnih granica. 

INTRODUCTION 

Electrohydrodynamic thermal instability in a porous 

medium is a phenomenon related to various fields. It has 

various applications in different areas such as EHD en-

hanced thermal transfer, EHD pumps, EHD in micrograv-

ity, micromechanic systems, drug delivery, micro-cooling 

system, nanotechnology, oil reservoir modelling, petroleum 

industry, building of thermal insulation, biomechanics, 

engineering etc. Chandrasekhar /1/ has given a comprehen-

sive account of thermal instability of Newtonian fluid under 

the various assumptions of hydrodynamics and hydromag-

netics. The investigation in porous media has been started 

with the Darcy model. A good account of convection prob-

lems in a porous medium is given in /2-4/. Electrodynamics 

of continuous media and electrohydrodynamic convection 

in fluids has been studied by /5–7/. Electrohydrodynamics 

is a branch of fluid mechanics which deals with the motion 

of fluid under the influence of electrical forces. It can also 

be considered as that part of electrodynamics which is 

necessitated with the influence of moving media on electric 

fields. Electrohydrodynamics involve both the effect of fluid 

in motion and the influence of the field in motion /8-9/. 

Nanofluid was first coined by Choi /10/. Nanofluid is a 

mixture of nano-sized metallic particles immersed in 
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common fluids such as water, ethanol or engine oils, typi-

cally used as base fluids in nanofluids and the nanoparticles 

may be taken as oxide ceramics such as Al2O3 or CuO, 

nitride ceramics such as AlN or SiN and several metals 

such as Al or Cu. Nanofluid has various applications in 

automotive industries, energy saving etc. Further, suspen-

sions of nanoparticles are being developed in medical appli-

cations including cancer therapy. The detailed study of ther-

mal convection in a layer of nanofluid in porous medium 

based upon Buongiorno /11/ model has been discussed by 

different authors /12-22/. 

All the studies referred above deal with Newtonian nano-

fluids. However, with the growing importance of non-New-

tonian fluids in geophysical fluid dynamics, chemical tech-

nology and petroleum industry attracted widespread interest 

in the study on non-Newtonian nanofluids. One such type 

of fluids is Walters’ (model B') /22/ elastico-viscous fluid 

having relevance in chemical technology and industry. 

Walters’ (model B') elastico-viscous fluid form the basis for 

the manufacture of many important polymers and useful 

products. A good account of thermal instabilities problems 

in a Walters’ (Model B') elastico-viscous fluid in a porous 

medium is given in /24-27/. 

Recently, considerable interest has been evinced in the 

study of electrohydrodynamic thermal instability in viscous 

and viscoelastic fluid. Takashima /28/ discussed the effect 

of uniform rotation on the onset of convective instability in 

a dielectric fluid under the simultaneous action of AC elec-

tric field. The onset of electrohydrodynamic instability in a 

horizontal layer of viscous and viscoelastic fluid was stud-

ied by /29-36/.  

The growing number of applications of electrohydrody-

namic thermal instability in an elastico-viscous nanofluid 

fluid in a porous medium which include several engineering 

and medical fields, such as automotive industries, energy 

saving and cancer therapy, motivated the current study. Our 

main aim is to study the effect of vertical AC electric field 

on the onset of thermal instability problem in a horizontal 

layer of an elastico-viscous Walters’ (Model B') nanofluid 

in a porous medium. 

FORMULATION OF THE PROBLEM AND MATHE-

MATICAL MODEL  

Here we consider an infinite horizontal porous layer of a 

Walters’ (model B') elastico-viscous nanofluid of thickness 

d, bounded by the planes z = 0 and z = d and subject to a 

uniform vertical AC electric field applied across the layer; 

the lower surface is grounded and the upper surface is kept 

at an alternating (60 Hz) potential whose root mean square 

value is V1 (see Fig. 1). The layer is heated from below, 

which is acted upon by a gravity force g = (0, 0, -g) aligned 

in the z direction. The temperature, T, and the volumetric 

fraction of nanoparticles, , at the lower (upper) boundary 

is assumed to take constant values T0, and φ0 (T1, and φ1), 

respectively. We know that keeping a constant volume 

fraction of nanoparticles at the horizontal boundaries will 

be almost impossible in a realistic situation. However, we 

assumed these conditions, which have also been previously 

adopted by several authors /12-19/.  

g = g(0,0,-g)

Heated from below

X

Y

Z

Z = 0

Z = d

O

Walters’(model B’)
 nanofluid in 
porous medium

AC Electric Field

 
Figure 1. Physical configuration. 

Assumptions 

The mathematical equations describing the physical model 

are based upon the following assumptions 

– all thermophysical properties, except for the density in 

the buoyancy term, are constant (Boussinesq hypothesis); 

– base fluid and nanoparticles are in thermal equilibrium state; 

– nanofluid is incompressible and laminar;  

– negligible radiative heat transfer;  

– size of nanoparticles is small as compared to pore size of 

the matrix; 

– nanoparticles are being suspended in the nanofluid using 

either surfactant or surface charge technology, preventing 

the agglomeration and deposition of these on the porous 

matrix; 

– the temperature and volumetric fraction of the nanoparti-

cles are constant on the boundaries; 

– the base fluid of the nanofluid is a Walters’ (model B') 

elastico-viscous fluid; 

– there is no nanoparticle flux at the plate and that the parti-

cle fraction value adjusts accordingly. 

Governing equations 

Let Tij, ij, eij, , ′, p, ij, qi, xi and d/dt denote, respec-

tively, the total stress tensor, shear stress tensor, rate-of-

strain tensor, viscosity, viscoelasticity, isotropic pressure, 

Kronecker delta, velocity vector, position vector and con-

vective derivative. Then the Walters’ (model B') elastico-

viscous fluid is described by the constitutive relations 

 ij ij ijT p = − + , (1) 

 2ij ij
d

e
dt

  
 

= − 
 

, (2) 

 
1

2

ji
ij

j i

qq
e

x x

 
 = +
  
 

. (3) 

The above relations were proposed and studied by 

Walters’ /18/. 

The equations of mass-balance and momentum-balance 

for Walters’ (model B') elastico-viscous with vertical AC 

electric field /1, 23-27/ under the Oberbeck-Boussinesq 

approximation in a porous medium are 

 . 0 =q  (4) 
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where: ( )P
2

K
p






= − 


E E  is the modified pressure /27/ 

and , , ′, p, , k1, E, K, q(u,v,w) denote respectively, 

density, viscosity, viscoelasticity, pressure, medium poros-

ity, medium permeability, root mean square value of the 

electric field and Darcy velocity vector, respectively. 

The density  of the nanofluid can be written /11/ as 

 (1 )p f   = + −  (6) 

where:  is the volume fraction of nanoparticles; p is the 

density of nano particles; and f is the density of base fluid. 

We approximate the density of the nanofluid by that of the 

base fluid, that is we consider  = f /13, 15/. Now intro-

ducing the Boussinesq approximation for the base fluid, the 

specific weight, g in Eq.(5) becomes 

  0(1 ) (1 ( ))p T T    + − − −  g g , (7) 

where:  is the coefficient of thermal expansion. 

If one introduces a buoyancy force, the equation of motion 

for Walters’ (model B') nanofluid by using Boussinesq approx-

imation and Darcy model for porous medium (e.g. /18/) is 

given by 

 ( ) 00 (1 ) 1 ( )pP T T    = − + + − − − −  g  

 
1

1 1
( )

2
K

k t
 

 
− − −   
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q E E , (8) 

The mass-balance equation for the nanoparticles (Buon-

giorno /11/) is 

 
2 2

0

1 T
B

D
D T

t T


 




+  =  + 


q . (9) 

The thermal energy equation for a nanofluid is 

 
2( )m m

T
c T k T

t


 
+  =  +  

q  

 
0

( ) T
p B

D
c D T T T

T
  

 
+   +   

 
, (10) 

where: (c)m is heat capacity of fluid in porous medium; 

(c)p is heat capacity of nanoparticles; and km is thermal 

conductivity. 

The Maxwell equations are  

 0 =E , (11) 

 ( ) 0K =E . (12) 

Let V be root mean square value of electric potential. 

The electric potential can be expressed as 

 V= −E . (13) 

The dielectric constant is assumed to be a linear function 

of temperature and is of the form 

 0 0[1 ( )]K K T T= − − , (14) 

where:  > 0, is the thermal coefficient of expansion of die-

lectric constant and is assumed to be small. 

We assume that the temperature is constant and nanopar-

ticles flux is zero on the boundaries. The boundary condi-

tions /1, 18/ are 

0
0

1
1

0,  ,  0  at  0

and  0,  ,  0  at  .
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w T T D z

z T z
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
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 (15) 

We introduce non-dimensional variables as 

, ,
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, 

2
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d
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1

m
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1 0
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

 

−
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−
, 1

0 1

T T
T
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−
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−
, 

0

K
K

E Td
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
, 

where: 
( )

m
m

P f

k

c



=  is thermal diffusivity of the fluid; and 

( )

( )

P m

P f

c

c





=  is the thermal capacity ratio. Eliminating the 

modified pressure from the momentum-balance Eq.(8) by 

operating twice curl and retaining the vertical component, 

we obtain the equations in non-dimensional form (after 

dropping the dashes ( ' ) for convenience) as 

 0 =q , (16) 

 ˆ ˆ0 1 F Rm Raz z= p e + Te
t

 
− − − − − 

 
q  

 2
eaˆRn Rz H

K
e T

z


 
− +  − 
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, (17) 

 2 2AN1 1 1
.

Le Le
q T

t


 

 


+  =  + 


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2 A A BN N N

Le Le
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


+  = +   +  
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 2 T
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Here 
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p

m
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2 2 2 2

0
ea

( )
R

m

KE d T




= , (28) 

denote respectively: thermal Lewis number; kinematic visco-

elasticity parameter; density Rayleigh number; nanoparticle 

Rayleigh number; modified diffusivity ratio; AC electric 

Rayleigh number; and modified particle-density ratio. 2
H 

is the two-dimensional Laplace operator in the horizontal 

plane, that is 
2 2

2

2 2H
x y

 
 = +

 
. 

The dimensionless boundary conditions are 

2

A2

2
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z z zz
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= = = = + = =
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(29) 

Basic solutions 

We assume that the basic state is quiescent /15, 16, 18, 

34, 36, 38/ and is given by 

 0 0
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0
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Also, we have 

 0 ˆ( ) log 1b
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V z k

T d


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= − + 

  
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where: 
1

0
log(1 )

T
V

dE
T







= −
+ 

 is the root mean square value of 

the electric field at z = 0. 

The basic state defined in Eqs.(30) is substituted into 

Eqs.(18) and (19), these equations reduce to 

 
2 2

A2 2

( ) ( )
N 0b bd z d T z

=
dz dz


+ , (31)  

22
B A B

2

( ) ( ) ( ) ( )N N N
0

Le Le

b b b bd T z d z dT z dT z

dz dz dzdz

  
+ + = 

 
. (32) 

Using boundary conditions Eq.(29) in Eqs.(31) and (32), 

the integration of Eq.(31) gives 

 A

( ) ( )
N 0b bd z dT z

dz dz


+ = . (33)      (33) 

Using Eq.(22) in Eq.(32), we obtain 

 
2

2

( )
0bd T z

dz
= . (34) 

Applying the boundary conditions Eq.(29), the solution 

of Eq.(23) is given by 

 ( ) 1bT z z= − . (35) 

Integrating Eq.(33) by applying boundary conditions 

Eq.(29), we get 

 0 A( ) Nb z z = + . (36) 

These results are identical with the results obtained by 

Sheu /16/ and Nield and Kuznetsov /15, 18/. 

Perturbation solutions 

To study the stability of the system, we superimposed 

infinitesimal perturbations on the basic state, so that 

 
( , , ) ( , , ),  ,  ,

,  .

b b

b b b

u v w q u v w T T T K K K
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  = + = + + = +

q
 (37)   

Introducing Eq.(37) into Eqs.(16)-(20), linearizing the 

resulting equations by neglecting nonlinear terms that are 

product of prime quantities, and dropping the primes (") for 

convenience, the following equations are obtained 

 0 =q , (38) 

2
eaˆ ˆ0 1 Ra Rn Rz z H

K
P F Te e T

t z
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V

z


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
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Boundary conditions for Eqs.(38)-(42) are 

 

2

A2
0,  0,  N 0

at  0  and  at  1.

w V T
w T

z z zz

z z

   
= = = = + =
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= =

 (43) 

Normal mode analysis 

We express the disturbances into normal modes of the form 

[ , , , ] [W( ), ( ), ( ), ( )]exp( )w T V z z z z ilx imy t =    + + , (44) 

where: l, m are the wave numbers in the x and y direction, 

respectively; and  is the growth rate of the disturbances. 

Substituting Eq.(44) into Eqs.(38)-(42), we obtain the 

following eigenvalue problem 

2 2 2 2 2
ea( )(1 )W Ra Rn R ( ) 0D a F a a a D− − + −  + −  =  (45) 
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D a D a



 

 
− − − − −  = 

 
, (48) 

 
2 2( )D a D−  =  .    (49) 

where: D = d/dz and a2 = l2 + m2 is the dimensionless hori-

zontal wave number. 

The boundary conditions of the problem in view of 

normal mode analysis are 
2

AW 0,  W 0,  0,  0,  N 0

at  0  and  1.

D D D D

z z

= =  =  =  +  =

= =
 (50) 
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METHOD OF SOLUTION 

The Galerkin-type weighted residuals method is used to 

find an approximate solution of the system of Eqs.(45)-(49) 

with the corresponding boundary conditions Eqs.(50). In 

this method the test functions are the same as the base 

(trial) functions. Thus, we can write 

 
1 1

1 1

W W ,  ,  

,  ,

N N

s s s s
s s

N N

s s s s
s s

A B

C D

= =

= =

=  = 

 =   = 

 

 

 (51) 

where: As, Bs, Cs and Ds are unknown coefficients; s = 1, 2, 3, 

…, N; and base functions Ws, s, s and s satisfy boundary 

conditions Eqs.(50). Using expression for W, ,  and  

in Eqs.(45)-(49) and multiplying the first equation by Ws, 

second by s, third by s and fourth by s; then integrating 

between limits 0 to 1, we obtain a set of 3N homogeneous 

equations with 3N unknowns As, Bs, Cs and Ds; s = 1, 2, 3, 

… N. For the existence of non-trivial solution, the vanishing 

of the determinant of coefficients produces the characteristics 

equation of the system in terms of Rayleigh number, Ra. 

Linear stability analysis and dispersion relation 

We have considered the case of free-free boundaries for 

which the system of Eqs.(45)-(49) together with boundary 

conditions Eqs.(50) constitute a linear eigenvalue problem 

with variable coefficient for the growth rate of disturbance 

of the system. The resulting eigenvalue problem is solved 

numerically by the Galerkin method of first order (N = 1), 

which gives the expression for Rayleigh number Ra as 
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 (52) 

Equation (52) is the required dispersion relation account-

ing for the effect of Lewis number, kinematic viscoelastic-

ity parameter, AC electric Rayleigh number, nanoparticle Ray-

leigh number, modified diffusivity ratio on thermal instability 

in a layer of Walters’ (model B') elastico-viscous nanofluid 

saturating a porous medium under vertical AC electric field. 

For neutral stability, the real part of  is zero. Hence on 

putting  = i (where  is real and is a dimensionless 

frequency) in Eq.(52), we have 

 1 2Ra i=  +  , (53) 

where 
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and 
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 (55) 

Since Ra is a physical quantity, so it must be real. Hence, 

it follows from Eq.(52) that either  = 0 (exchange of 

stability, steady state) or Δ2 = 0 ( ≠ 0 overstability or 

oscillatory onset). 

STATIONARY CONVECTION 

Since oscillatory convection has been ruled out, because 

of the absence of two opposing buoyancy forces, we need 

to consider only the case of stationary convection. Put  = 

0 in Eq.(52), we obtain 

2 2 2 2

ea A2 2 2

( ) Le
Ra R N Rn

( )

a a

a a





+  
= − − + 

 +
. (56) 

Equation (56) expresses the Rayleigh number as a func-

tion of the dimensionless resultant wave number a and param-

eters Rea, , Rn, Le, NA. Since the elastico-viscous parame-

ter F vanishes with , the Walters’ (model B') elastico-

viscous nanofluid fluid behaves like an ordinary Newtonian 

nanofluid. Equation (56) is identical to that obtained by 

Kuznetsov and Nield /14/, and Rana and Chand /36/. Also, 

in Eq.(56) the particle increment parameter NB does not 

appear, and the diffusivity ratio parameter NA appears only 

in association with the nanoparticle Rayleigh number Rn. 

This implies that the nanofluid cross-diffusion terms approach 

is to be dominated by the regular cross-diffusion term. 

In the absence of AC electric field Rae, Eq.(56) reduces to 

 
2 2 2

A2

( ) Le
Ra N Rn

a
=

a





+  
− + 

 
, (57) 

which is identical with the result derived by Kuznetsov and 

Nield /10/, Rana et al. /35/, and Rana and Chand /36/. 

The critical cell size at the onset of instability is obtained 

by minimizing Ra with respect to a. Thus, the critical cell 

size must satisfy 

 
Ra

0
a ac

a =

 
= 

 
, 

Eq.(56) which gives ac =   3.1416. 

The minimum of first term of right-hand side of Eq.(56) 

is attained at ac =  and minimum value found 42, so the 

corresponding critical Rayleigh number given by 

 2
A

Le
(Ra) 4 N Rnc 



 
= − + 

 
. (58) 

This is the same result derived by Nield and Kuznetsov /15/. 

In the absence of nanoparticles (Rn = Le = NA = 0) and 

AC vertical electric field (Re = 0), Eq.(58) reduces to 

 
2Ra 4= . (59) 

which is a well-known result of critical Rayleigh number. 
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Thus, presence of the nanoparticles lowers the value of 

the critical Rayleigh number usually by substantial amount. 

Also, parameter NB does not appear in Eq.(56), thus insta-

bility is purely a phenomenon due to buoyancy coupled 

with conservation of nanoparticles. Thus, average contribu-

tion of nanoparticles flux in the thermal energy equation is 

zero with one-term Galerkin approximation. 

To study the effect of AC electric Rayleigh number, 

Lewis number, nanoparticle Rayleigh number, modified diffu-

sivity ratio and medium porosity, we examine the behaviour 

of Ra/Rea, Ra/Le, Ra/NA, Ra/Rn and Ra/ ana-

lytically. 

From Eq.(56), we obtain 

 
2

2 2
ea

Ra

R ( )

a

a


= −

 +
, (60) 

which is negative, thereby implying the AC electric field 

inhibits the stationary convection of the system, thereby 

implying the AC electric field has destabilizing effect on 

the system which is in an agreement with the results 

derived by Takashima /31/ and Shivakumara /34/, Rana et 

al. /35/ and Rana and Chand /36/. 

From Eq.(56), we obtain 

 
Ra Rn

Le 


= −


, (61) 

which is negative if Rn is positive. But for bottom-heavy 

nanoparticle distribution, Rn is negative, thereby implying 

Lewis number advances the stationary convection, thereby 

implying Lewis number has stabilizing effect on the system 

which is in an agreement with the results derived by Sheu 

/16/. 

From Eq.(56), we obtain 

 
A

Ra
Rn

N


= −


, (62) 

which is positive if Rn is negative, thereby implying modi-

fied diffusivity ratio stabilizing effect on the system. 

From Eq.(56), we obtain 

 A
Ra Le

N
Rn 

  
= − + 

  
, (63) 

which is negative, thereby implying nanoparticle Rayleigh 

number inhibits the electroconvection, thereby implying nano-

particle Rayleigh number has destabilizing effect on the 

system which is in an agreement with the results derived by 

Nield and Kuznetsov /15, 18/, Chand et al. /22/ and Chand 

and Rana /23/. 

From Eq.(56), we obtain 

 
2

Ra LeRn

 


=


, (64) 

which is negative if Rn is negative, thereby implying 

medium porosity has a destabilizing effect on the system. 

RESULTS AND DISCUSSIONS 

The thermal Rayleigh number at the onset of stationary 

convection is given by Eq.(56) and does not depend on the 

viscoelastic parameter. It takes the same value as the one 

obtained for an ordinary Newtonian fluid. Furthermore, the 

critical wave number, ac, at the onset of steady convection 

coincides with that reported by Tzou /13/, Nield and Kuz-

netsov /15/. Note that this critical value does not depend on 

any thermophysical property of the nanofluid. Conse-

quently, the interweaving behaviours of Brownian motion 

and thermophoresis of nanoparticles does not change the 

cell size at the onset of steady instability and the critical cell 

size ac is identical to the well-known result for Bénard 

instability with a regular fluid /1/. 

According to the definition of the nanoparticle Rayleigh 

number Rn in Eq.(25), this corresponds to negative value of 

Rn for bottom-heavy distribution of nanoparticles (1 < 0 

and p > ). In such cases, values of NA are also negative 

according to Eq.(26). The value of the critical Rayleigh 

number for the nanofluid is larger than that for an ordinary 

fluid, that is, convection sets earlier in an ordinary fluid 

than in a nanofluid with bottom-heavy distribution of nano-

particles. This implies that thermal conductivity of this kind 

of nanofluids is higher than that of ordinary fluids. In the 

following discussion, negative values of Rn and NA are 

presented. 

The dispersion relation Eq.(56) is analysed numerically. 

Graphs have been plotted by giving some numerical values 

to the parameters to depict the stability characteristics. 

Stability curves for AC electric Rayleigh number Rea, 

Lewis number Le, nanoparticles Rayleigh number Rn, mod-

ified diffusivity ratio NA, and porosity parameter  are 

shown in Figs. 2-6. 

 

Figure 2. Variations of thermal Rayleigh number Ra with wave 

number a for values of AC electric Rayleigh number Rea =100, 

200 and 300. 

Variations of thermal Rayleigh number Ra with the wave 

number a for three values of AC electric Rayleigh number, 

namely, Rea = 100, 200 and 300 is plotted in Fig. 2 and it is 

observed that the thermal Rayleigh number decreases with 

increase in AC electric Rayleigh number, thereby implying 

AC electric Rayleigh number destabilizes the system. 

In Fig. 3, variations of thermal Rayleigh number Ra with 

wave number a for three values of nanofluid Lewis number, 

namely, Le = 500, 1000 and 1500, shows that the thermal 

Rayleigh number increases with the increase in the Lewis 

number. Thus, the Lewis number has a stabilizing effect on 

the system. 
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Figure 3. Variations of thermal Rayleigh number Ra with wave 

number a for Lewis number Le = 500, 1000, and 1500. 

Variations of thermal Rayleigh number Ra with the wave 

number a for three different values of modified diffusivity 

ratio, namely, NA = -5, -45, -85 are plotted in Fig. 4 and it is 

found that the thermal Rayleigh number increases with the 

modified diffusivity ratio, thereby implying that the 

modified diffusivity ratio has a stabilizing effect on the 

system. For negative values of NA, an increase of NA 

reduces the thermophoresis effect of pushing the heavier 

nanoparticles upwards. As a result, the stabilizing effects of 

particle distributions are enhanced. Thus, the effect of increas-

ing NA is to stabilize the system when RN is negative. 

 

Figure 4. Variations of thermal Rayleigh number Ra with wave 

number a for modified diffusivity ratio NA = -5, -45 and -85. 

 

Figure 5. Variations of thermal Rayleigh number Ra with wave 

number a for nanoparticle Rayleigh number Rn = -0.1, -0.3, -0.5. 

In Fig. 5, the variations of thermal Rayleigh number Ra 

with wave number a for three different values of nanoparti-

cle Rayleigh number, namely Rn = -0.1, -0.3, -0.5, shows 

that the thermal Rayleigh number increases with the decrease 

in nanoparticle Rayleigh number. Thus, nanoparticle Rayleigh 

number has a destabilizing effect on the system. Variations 

of thermal Rayleigh number Ra with wave number a for 

three different values of medium porosity, namely  = 0.2, 

0.4 and 0.6, are plotted in Fig. 6 and it is found that thermal 

Rayleigh number decreases with the increase in medium 

porosity, thereby implying medium porosity has a destabi-

lizing effect on the onset of stationary convection in a layer 

of Walters’ (model B') elastico-viscous nanofluid saturating 

a porous medium. 

 

Figure 6. Variations of thermal Rayleigh number Ra with wave 

number a for medium porosity  = 0.2, 0.4 and 0.6. 

CONCLUSION 

Electrohydrodynamic thermal instability in a porous 

medium layer of Walters’ (model B') elastico-viscous nano-

fluid in a porous medium has been investigated by using a 

linear stability analysis and Galerkin method. The Walters’ 

(model B') elastico-viscous nanofluid incorporates the Brown-

ian motion and thermophoresis. The main conclusions of 

the present analysis are: 

– for the case of stationary convection, the Walters’ (model 

B') nanofluid behaves like an ordinary Newtonian nanofluid, 

– kinematic viscoelasticity has no effect on the onset of 

stationary convection, 

– the AC electric field Rayleigh Number has a destabilizing 

effect on the stationary convection, 

– the Lewis number and modified diffusivity ratio have a 

stabilizing effect, 

– nanoparticle Rayleigh number and medium porosity have 

a destabilizing effect on the system, 

– oscillatory convection has been ruled out under the more 

realistic boundary conditions (e.g. Nield and Kuznetsov 

/18/). 
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