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Abstract 

Elastic-plastic stress concentrations in spherical shells 

subjected to internal pressure are of much significance in 

the theory of structural components. The paper presents the 

study of elastic-plastic stress concentrations in orthotropic 

spherical shells made of composite materials subjected to 

internal pressure by using Seth’s transition theory. It has 

been seen that the spherical shell of orthotropic composite 

material requires higher values of pressure at the inner 

surface as compared to shell of transversely isotropic 

material. 

Ključne reči 

• kompoziti 

• ortotropni materijali 

• transverzalni izotropni materijali 

• naponi 

• teorija prelaznih napona Seta 

• sferna ljuska 

Izvod 

Koncentracija elastoplastičnih napona kod sfernih ljuski 

opterećenih unutrašnjim pritiskom je od velikog značaja u 

teoriji nosećih konstrukcija. Predstavljeno je istraživanje 

koncentracije elastoplastičnih napona kod ortotropnih sfer-

nih ljuski od kompozitnog materijala, opterećenih unutraš-

njim pritiskom, primenom teorije prelaznih napona Seta. 

Poznato je da su potrebni veći pritisci na unutrašnjoj 

površini sferne ljuske od ortotropnog kompozitnog materi-

jala u poređenju sa ljuskom od transverzalnog izotropnog 

materijala. 

INTRODUCTION 

Modelling the elastic-plastic behaviour of spherical and 

cylindrical shells and vessels under the influence of internal 

and external pressure has gained much significance in 

recent times. Shells made of materials with specific elastic 

behaviour are used in various mechanical components of 

satellites, submarines, hemispheric dome shaped antennas, 

automotives, helmets etc. Vessels made in the shape of 

shells when used to store fluids at high pressure, experience 

internal pressure, therefore it is necessary that the shell 

material retains its integrity under such conditions. Model-

ling spherical shells of isotropic materials is available in 

most standard textbooks /2, 3, 6, 8-10/. Miller /13/ evalu-

ated solutions for stresses and displacements in a thick 

spherical shell subjected to internal and external pressure 

loads. You et al. /17/ presented a highly precise model to 

carry out elastic analysis of thick-walled spherical pressure 

vessels. The authors have studied the behaviour of shells 

particularly when some assumptions were made, such as: (i) 

incompressibility of the material used; (ii) creep strain law 

derived by Norton; (iii) yield condition of Tresca; and (iv) 

sssociated flow rules. The need for utilizing these specially 

appointed semi-experimental laws in elastic-plastic transi-

tion depends on the approach that the transition is a linear 

phenomenon which is unrealistic. Deformation fields related 

to irreversible phenomenon, such as elastic-plastic disfig-

urements, creep relaxation, fatigue and crack etc. are non-

linear in character. The traditional measures of deformation 

are not adequate to manage transitions. The concept of 

generalized strain measures and transition theory given by 

/4/ has been applied to find elastic-plastic stresses in various 

problems by solving non-linear differential equations at the 

transition points. Thakur /22/ successfully analysed creep 

transition stresses of a thick isotropic spherical shell by 

finitesimal deformation under steady state of temperature 

and internal pressure by using Seth’s transition theory. All 

these problems, based on the recognition of the transition 

state as separate state, necessitates showing the existence of 

the used constitutive equation for that state. In this paper we 

have studied the behaviour of orthotropic composite materi-

al when modelled in the shape of a spherical shell subjected 

to internal pressure. Two types of composite materials 

exhibiting orthotropic elastic behaviour are used to check 

the elastic-plastic stress concentrations. The first material is 

a boron-aluminium fibre reinforced composite, composed 

of uniaxial boron fibres in a matrix of 6061 aluminium 

alloy, tested for the stiffness matrix constants by acoustic 

resonance spectroscopy, /12/. The second material is a 

graphite-magnesium fibre reinforced composite, composed 

of continuous uniaxial graphite fibres in a magnesium 

matrix, studied for orthotropic elastic constants, /11/. Obser-
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vations of these two orthotropic composites are compared 

to observations of transversely isotropic materials, i.e. tita-

nium, whose stiffness constants are given in /14/ and bar-

ium-titanate, given in /15/. 

GOVERNING EQUATIONS 

We consider a spherical shell of constant thickness with 

internal and external radii a and b, respectively, under inter-

nal pressure pi. 

Displacement coordinates: the components of displace-

ment in spherical coordinates are taken as: 

 (1 ), 0, 0u r v w= − = = , (1) 

where:  is position function depending on r. The general-

ized components of strain are given by /5-7/ as: 
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where: n is the measure; and  = d/dr. 

Stress-strain relation: the stress-strain relations for the 

isotropic material are given by /1/: 

 ij ijkl klT c e= ,   (i, j, k, l = 1,2,3) 

where: Tij and ekl are the stress and strain tensors, respec-

tively. These nine equations contain a total of 81 coeffi-

cients eijkl, but not all coefficients are independent. The 

symmetry of Tij and eij reduces the number of independent 

coefficients to 36. For elastic orthotropic materials which 

have three mutually orthogonal planes of elastic symmetry, 

these independent coefficients reduce to 12 and to 9 if the 

coefficients are symmetric. The constitutive equations for 

orthotropic media are given by /16/: 
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Substituting Eq.(2) in Eq.(3), we get: 
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Equation of equilibrium: the equations of equilibrium are: 
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Substituting Eq.(4) in Eq.(5), we see that the equations 

of equilibrium are all satisfied except: 
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From Eq.(7), the only case of interest is 

 0T T − = . (8) 

Equation (8) is satisfied by T and T as given by 

Eq.(2). If c21 = c31, c22 – c33 = c32 – c23, the equation of 

equilibrium from Eq.(6) becomes: 
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Critical points: by substituting Eq.(4) into Eq.(9), we get a 

nonlinear differential equation with respect to : 
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where: P is function of ; and  is function of r only. 

Transition points: the transition points of  in Eq.(10) are 

P = 0, P → –1, and P → . 

Boundary condition: the boundary conditions of the prob-

lem are given by: 

 r = a,  rr = –pi ,  and  r = b,  rr = 0. (11) 

PROBLEM SOLUTION 

For finding the elastic-plastic stresses, the transition 

function is taken through the principal stresses (see /5-7, 

18-36/) at transition point P → . We define the transition 

function  as: 
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where:  be the transition function of r only. Taking the 

logarithmic differentiation of Eq.(12) with respect to r and 

using Eq.(10), we get 
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Taking the asymptotic value of Eq.(13) as P →  and 

integrating, we get: 
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1
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where: A1 is a constant of integration; and K = c11 – c21/c11. 

From Eq.(12) and Eq.(14), we have 
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Using the boundary condition from Eq.(11) into Eq.(15), 

we get 

2
1

KA b=    and   

2
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Substituting Eq.(15) into Eq.(6) and using Eq.(16) and 

Eq.(8), we get 
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Initial yielding: from Eq.(17), it is seen that |T – Trr| is 

maximal at the inner surface (that is at r = a), therefore 

yielding of the shell will take place at the inner surface of 

the shell and Eq.(17) can be written as: 
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Using Eq.(18) in Eqs.(15)-(17), we get the orthotropic 

transitional stresses as in non-dimensional components as: 
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where: R = r/b; R0 = a/b; rr = Trr/Y;  = T/Y; and Pi = 

pi/Y. 

Fully-plastic state: for the fully-plastic case /5/, c11 = c13 = 

–c12, c23 = c21 = –c22, the stresses and pressure from Eq.(19) 

become: 
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where: R = r/b; R0 = a/b; rr = Trr/Y*;  = T/Y*; K1 = 

(c12 – c22)/c12; and Pf = pf /Y*. 

NUMERICAL RESULTS AND DISCUSSIONS 

The above investigations elaborate the initial yielding 

and fully plastic state of spherical shells subjected to inter-

nal pressure. The cases of two shells made of orthotropic 

fibre-reinforced composites (i.e. boron-aluminium compo-

site and graphite-magnesium composite) and transversely 

isotropic material (i.e. titanium and barium-titanate) are 

considered. In Fig. 1, curves are drawn between pressure 

and radii ratio R0 = a/b at initial yielding state by using 

Table 1. It has been seen that the spherical shell made of 

orthotropic composite material requires higher values of 

pressure at the inner surface as compared to the spherical 

shell made of transversely isotropic materials. 

Curves are produced in Figs. 2-3, between stresses and 

radii ratio R = r/b for elastic-plastic transition state and 

fully plastic state. It has been observed that the circumfer-

ential stress has a maximal value at the inner surface of the 

shell made of the orthotropic material (i.e. boron-aluminium 

composite and graphite-magnesium composite) as compared 

to the shell disc made of the transversely isotropic material 

(i.e. titanium and barium-titanate), but reverse results in the 

case of full plasticity. 

Table 1. Elastic stiffness constants. 

Material symmetry Materials 
Elastic stiffness constants in units of GPa 

C11 C22 C33 C44 C55 C66 C12 C13 C23 

Orthotropic* 
boron-aluminium composite 185.9 183.5 246.1 55.1 55.8 50.8 74.9 60.3 59.4 

graphite-magnesium composite 28.19 27.08 174.68 17.91 17.70 8.76 10.66 12.41 12.41 

Transversely isotropic** 
titanium 162.4 180.7 180.7 46.7 - - 92.0 69.0 - 

barium-titanate 168 189 189 5.46 - - 78 71 - 
* Orthotropic materials have 9 independent material parameters.  

** Transversely isotropic materials have 5 independent material parameters. 

  
Figure 1. Effect of pressure in shells along the radius R0 = a/b at initial yielding. 
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Figure 2. Effect of stresses in shells along the radius R = r/b at elastic-plastic state. 

 
Figure 3. Effect of stresses in spherical shells along the radius R = r/b for fully-plastic state. 
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