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Abstract 

Generally, piles are slender structural elements that 
transfer the vertical and horizontal structural loads to 
stiffer soil deposits or bedrock. In particular, the axial load 
transfer is through the pile shaft and/or via the pile end. 
These piles are defined as friction or end bearing piles 
when one of the two previously mentioned load transfers 
are negligible with respect to one another. This paper con-
siders the influence of the pile head restraint, as well as 
lateral soil support, on the stability of axially loaded piles. 
This is commonly referred to as pile buckling. 

Ključne reči 
• čelični stub 
• analiza izvijanja 
• interakcija stub-tlo 
• analiza konačnim elementima 
• granični elementi 

Izvod 

Generalno, stubovi su vitki konstrukcioni elementi koji 
prenose vertikalno i horizontalno opterećenje konstrukcije 
na kruti sastav tla ili stena. Posebno, aksijalno opterećenje 
se prenosi kroz osovinu stuba i/ili na kraj stuba. Ovi stubovi 
se definišu kao frikcioni, ili sa osloncem na kraju stuba, 
kada je jedan od prethodna dva tipa prenosa opterećenja 
zanemarljiv, jedan u odnosu na drugi. U radu se razmatra 
uticaj ograničenog pomeranja vrha stuba, kao i bočno osla-
njanje u tlu, na stabilnost aksijalno opterećenih stubova. 
Ovakvo ponašanje se često naziva izvijanje stuba. 

INTRODUCTION  

Pile buckling is a particular type of structural failure. 
However, the critical buckling load depends on various 
factors such as: (1) the pile section properties (length, cross-
section, elastic material properties); (2) the type of soil con-
fining the pile (sand and/or clay); (3) the type of stress 
analyses (effective stress analysis (ESA) for long term con-
ditions or total stress analyses (TSA) for short term condi-
tions); and (4) the method of pile installation. In this paper, 
all four points are covered to a certain degree, except that 
for the third point, the analysis is restricted to long-term 
conditions only (elastic drained soil moduli). Moreover, this 
study considers a pile having a box cross-section, where the 
method of installation is generally by pile driving. 

There are various studies in the literature on buckling. In 
particular, buckling is a dominant failure mode for slender 
piles in very soft clays /1, 4, 11/, loose sands and soils 
defined as liquefiable /2, 3, 7, 12/. The buckling failure of 
piles, in these studies, is primarily caused by the effect of 
the axial load inducing a loss of lateral support on the sur-
rounding soil. 

An important transgression is warranted at this point. 
One example of extreme and drastic condition, leading to 
the lateral loss of support is when the surrounding soil lique-
fies. This occurs in liquefiable soils, such as saturated sands 
and silts, when subject to cyclic loading. The pore pressure 
build up in such conditions leads to a complete loss of the 

confining effective stress and thus the soil offers no lateral 
support. Consequently, in liquefiable soils, piles should be 
designed with no account for lateral support and further-
more, the pile end should be extended to bedrock or to 
extremely stiff soils /10/. In fact, a pile embedded in a 
liquefiable soil is literally designed as an elastic column. 

A recent example of piles constructed in liquefiable soils 
is the 58-story (197-meter-tall) Millennium Tower in San 
Francisco. The piled foundation includes 950 cylinder 
concrete friction piles (18 to 27-meter-deep). This type of 
construction led the tower to sink 0.44 m and tilt 0.36 m 
towards the northwest, since completion of construction in 
2008. The main reason for the excessive soil deformation 
leading to the instability of the Tower is not clearly under-
stood. However, because the Millennium tower rests on a 
liquefiable soil deposit, and because the San Francisco 
region is at high risk for tremors, the piles should be 
extended to bedrock and designed for buckling. The case of 
the Millennium Tower constitutes an extreme or albeit 
exception of piled foundations. 

The circumstances are different when piles are embedded 
or partially embedded in non-liquefiable soils. In those 
cases, one can rely on the shaft as well as end bearing 
resistance of the surrounding soil. This is a shared view of 
many researchers in the geotechnical field. However, a 
common practice is to assume the end of the pile to be fixed 
/6, 8, 9, 13-15/. This assumption is restrictive because even 
in very stiff soil deposits, the possibility of pile tip settle-
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ment and rotation cannot be excluded. Consequently, the 
pile tip should be modelled as a free end, embedded in a 
stable surrounding soil medium, which gradually extends to 
distances where stresses and strains are negligible. 

Consequently, the present study considers a three dimen-
sional analysis of the linear elastic critical buckling load of 
a steel box-section pile embedded in various soil deposits. 
The embedded end of pile is modelled as free. In practice, 
pile groups are capped and consequently when analysing a 
single pile one must consider the type of restraint condition 
imposed on the pile head and whether or not the pile section 
is only partially embedded. Detail of the FEM modelling 
encompassing these facts are given at a later section. 

Finally, curves illustrating the factors affecting the numer-
ically calculated critical buckling loads are presented. The 
3D FEM simulations, yielding these curves, require as input 
the pile section elastic properties, as well as the elastic 
drained properties of the surrounding soil. These behav-
ioural curves are obtained for different pile head restraints 
in various soils, and so there is no need to address the pile 
end condition since the pile end is modelled as free. 

BUCKLING OF PARTIALLY EMBEDDED BOX-
SECTION PILES IN A 3-D ELASTIC CONTINUUM  

The stability or buckling of a pile leads to an eigenvalue 
problem. As previously mentioned, studies in the past 
modelled the problem as that of an embedded beam-column 
subjected to an axial compressive stress. The soil reaction 
as provided by either a Winkler or Elastic continuum were 
an integral part of the governing partial differential equa-
tion for the pile section. Therefore, two boundary condi-
tions (at the pile head and tip) were necessary in order to 
determine the eigenvalues. However, this approach (model-
ling buckling as a beam-column) renders the boundary 
condition at the pile end rather restrictive. 

This study challenges the problem differently and 
encompasses the following assumptions:  
– The pile and surrounding soil are sub-domains of an elas-

tic three-dimensional continuum. 
– The elastic material properties of both the pile section 

(Ep, µp) and soil (E′s, µ′s) are homogeneous and isotropic. 
– The pile-soil interface is modelled as thin elastic contin-

uum having a stiffness in both the normal and tangential 
direction to shear. 

– In the calculation of the critical buckling load, only the 
pile head is subject to kinematic constraints. 

– The ensuing FEM analyses consider geometric nonlinear-
ity for both the pile and surrounding soil. 
The sole kinematic constraint (concerning the pile section) 

imposed in the FEM analyses are that of a hinged or free 
pile head. Generally, these conditions depend on the pile 
head’s fixity with respect to a pile cap and on the unsup-
ported length of the pile. One cannot overemphasize that no 
kinematic constraints are necessary at the pile tip because 
the analyses are three dimensional (the surrounding soil 
stabilizes the embedded portion of the pile), not to mention 
the degree of fixity that is difficult to ascertain. 

However, when one deals with a geometrically nonlinear 
behaviour such as buckling, a state is established in which 

changes in geometry have a significant effect on the result-
ing load-displacement characteristics of a solid body. When 
geometric changes are significant, the geometry of the body 
must be updated continuously to determine the new posi-
tion of a material point. Hence, in a large deformation anal-
ysis, one must consider that the configuration of a body is 
changing unremittingly. This fact is very different from 
linear finite element analyses where displacements are infi-
nitely small so that the configuration of the body does not 
change. 

TOTAL LAGRANGIAN FORMULATION 

In order to deal with continuous changes in configura-
tions, one must choose the appropriate stress and strain 
measures. One possibility of stress and strain measures 
which fulfil this requirement is the 2nd Piola-Kirchhoff 
stress tensor and the Green-Lagrange strain tensor which 
are a compatible conjugate energy pair. It can be shown that 
the second Piola-Kirchhoff stress tensor S is work-conju-
gate to the rate of Green-Lagrange strain tensor Ė: 

 1
2

= ∫ 

V
W SEdV . (1) 

In other words, the equations of motion must now be 
derived for the deformed configuration of the soil-structure 
system at time t. Since the geometry of the deformed config-
urations is unknown, the equations must be rewritten in 
terms of a reference configuration. One of the key quantities 
to attain this objective is the deformation gradient tensor F 
which gives the relationship of a material line dX (material 
or Lagrangian differential element) before deformation to 
the line dx after deformation (spatial or Eulerian differential 
element). The deformation gradient tensor is defined in 
terms of the Lagrangian and Eulerian coordinates as 

 o( )∂ = ≡ ∆ ∂ 

T
TxF x

X
, (2) 

and gives rise to the symmetric Green-Lagrange strain tensor 

o o o o
1 1( ) ( ) ( )
2 2

 = ⋅ − = ∇ +∇ + ∇ ⋅∇ 
T T TE F F I u u u u . (3) 

The second Piola-Kirchhoff stress tensor S is used in the 
total Lagrangian formulation of a geometrically nonlinear 
analysis by considering the transformation of the current 
force df on a deformed elemental area da to the force dF on 
the undeformed area dA. This stress, S, is given as 

 1−= ⋅ ≡ ⋅dF F df dA S . (4) 
Thus, the second Piola-Kirchhoff stress tensor gives the 

transformed current force per unit undeformed area. The 
relationship between the usual Cauchy stress tensor, σ (cur-
rent configuration), and second Piola-Kirchhoff stress tensor 
S is given as 

 1 σ− −= ⋅ ⋅ TS JF F , (5) 
where: J stands for the Jacobian of the transformation or the 
determinant of the deformation gradient matrix 
 =J F . (6) 
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In the total Lagrangian formulation all quantities in the 
current configuration Ci are measured with respect to the 
initial configuration, from herein identified as the reference 
configuration CR = C0, where one considers the collection 
of intermediate configurations as (C0, C1, C2, …, Ci–1). 

For the total Lagrangian formulation, the elastic constitu-
tive equations are expressed in terms of the Kirchhoff stress 
increment tensor components oSij and Green-Lagrange strain 
increment tensor component oεkl through the material elas-
ticity tensor C as 
 0 0 0ε=ij ijkl klS C , (7) 

 1
0 0 0

−= +i i
ij ij ijS S S , (8) 

and 
 1

0 0 0ε
−= +i i

ij ij ijE E , (9) 

where 0iSij and i–1
0Sij, and 0iEij and i–1

0Eij, are respectively the 
second Piola-Kirchhoff stress tensor and the Green-Lagrange 
strain tensor components in the Ci and Ci–1 configurations. 

In the total Lagrangian formulation, the weak form is 
given as 
 0

2 2 0 2
0 0 0( ) ( ) 0δ δ− =∫ ij ijV S E d V R , (10) 

where 
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2 2 2
0 0 2 2σ
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ji
ij mn
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xx
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, 
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1
2
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E
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and 

 0 0
2 2 0 2 0
0 0 0( )δ δ δ= +∫ ∫i i i iV SR f u d V t u d S . (12) 

For computational purposes the incremental decomposi-
tion of this weak form is rewritten as 

 
0 0

0

0 1 0
0 0 0 0

2 1 0
0 0 0

( ) ( )

( ) ( ) (13)

δ ε δ η

δ δ
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0 0

0 0 0 0 0 0 0
1
2
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 0 0 0
1
2

η
∂ ∂

=
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k k
ij

i j

u u
x x

, (15) 

and 
 0 0 0ε η= +ij ij ije .  (16) 

Finally, the total Lagrangian formulation in matrix nota-
tion is given as 
 ( ) { } { }2 1

0 0[ ] [ ] { }+ ∆ = −L NLK K F F , (17) 

where 
 0

0
0[ ] [ ] [ ][ ]= ∫ T

L L LVK B C B d V ,  (18) 

 0
1 0
0[ ] [ ] [ ][ ]= ∫ T

NL NL NLVK B S B d V ,  (19) 

 { } { }0
1 1 0
0 0[ ]= ∫ T

LVF B S d V , (20) 

 { } { } [ ] { }0 0
2 2 0 2 0
0 0 0[ ]ψ ψ= +∫ ∫

TT
V SF f d V t d S , (21) 

 { } { }
2 2
0 02 2

0 02 2
0 0

,   
      = =   
      

x x

y y

f t
f t

f t
. (22) 

BUCKLING ANALYSIS IN THE CONTEXT OF THE 
TOTAL LAGRANGIAN FORMULATION 

A linearized buckling analysis considers a linear eigen-
value approach to the nonlinear problem. Namely, the 
buckling criterion is fulfilled when the displacements are 
indeterminate, or the stiffness matrix is singular. As previ-
ously derived (Eqs.(18) and (19)), the total stiffness matrix 
for the full geometrically nonlinear problem [K] is the sum 
of two contributions 
 ( )[ ] [ ] [ ( )]= +L NLK K K P , (23) 

where [KL] is the ordinary stiffness matrix for the linear 
case, whereas [KNL(P)] is the nonlinear component which 
depends on the load P. 

One can linearly approximate the previous expression, 
Eq.(23), by considering that KNL is proportional to the load-
ing P0, thus yielding 
 ( )[ ] [ ] [ ( )]λ= +L NL oK K K P . (24) 

The result is an eigenvalue problem for the parameter λ 
given by 
 ( )[ ] [ ( )] 0λ+ =L NL oK K P u . (25) 

Then the lowest eigenvalue λ is the critical load factor of 
the pile-soil system, and the corresponding Eigen mode, u, 
gives the associated buckling shape of the pile. 

DISCUSSION OF FINITE ELEMENT SIMULATION 
RESULTS 

The analyses of the buckling problem are carried out by 
assuming a three dimensional continuum that incorporates 
both the box-section pile (Fig. 1) and the surrounding soil 
(Figs. 2 and 3). Finite element simulations are carried out 
by commercial software COMSOL 5.3, /5/. One also deci-
phers in these figures the use of infinite elements in order to 
eliminate possible boundary effects. As shown in these 
figures, a typical finite element mesh is constituted with 
tetrahedral elements, totalling 32000 degrees of freedom. 

 
Figure 1. The box section of piles in finite element analyses. 
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Figure 2. Partially embedded pile in soil. 

 
Figure 3. Finite element model of the pile-soil system. 

The pile and surrounding soil are theoretical subdomains 
with their respective linear elastic properties. These subdo-
mains interact through thin layer elastic interface elements. 
These elements are necessary in order to establish a fric-
tional interface between the pile and surrounding soil. 
Moreover, because these thin layer elements are used to 
model interface friction only, they must be constrained 
against any possible volume change. This is best achieved 
by assuming a very high stiffness of the thin layer element 
perpendicular to the shearing direction. 

In all of the simulations, no assumptions of fixity of the 
pile tip are realized. In other words, the pile tip is modelled 
to be free of movement or completely unrestrained. 

A total of 500 simulations are carried out in order to 
calculate the critical buckling load of the soil-pile system 
λP0 and to basically extract from the analysis the associated 
pile mode shape. The elastic properties of pile material and 
various soil types (drained conditions) used in the finite 
element analyses are shown in Table 1. 

Table 1. Elastic properties of pile material and soils. 
Soil type E′s (MPa) µ′s 
Soft clay 10 0.38 

Medium clay 25 0.33 
Stiff clay 65 0.25 

Loose sand 15 0.2 
Medium sand 30 0.28 
Dense sand 60 0.3 

Pile material (steel) Ep = 200 GPa µp = 0.33 

Typical results of the analyses are presented in Tables 2 
to 13. Tables 2 to 4 provide the FEM critical buckling load 
factors for a pile embedded respectively in a soft, medium 
and stiff clay, having a non-clamped pile head. These results 
demonstrate that critical buckling load increases with embed-
ment, and for a constant unsupported length of pile. These 
results are shown in Fig. 4, where the FEM critical buckling 
load is plotted as a function of the slenderness ratio. 
Table 2. Critical buckling load factors for a non-clamped pile head 

in soft clay (perfectly rough soil-pile interface). 
pile slenderness Lu (m) Le (m) critical buckling load factor 

L/D = 17.14 3.0 3.0 4.6424e6 

L/D = 14.28 3.0 2.0 3.0177e6 

L/D = 11.43 3.0 1.0 1.0102e6 
L/D = 10 3.0 0.5 3.3312e5 

Table 3. Critical buckling load factors for a non-clamped pile head 
in medium clay (perfectly rough soil-pile interface). 

pile slenderness Lu (m) Le (m) critical buckling load factor 
L/D = 17.14 3.0 3.0 6.3202e6 

L/D = 14.28 3.0 2.0 5.2788e6 

L/D = 11.43 3.0 1.0 2.2897e6 
L/D = 10 3.0 0.5 8.0917e5 

Table 4. Critical buckling load factors for a non-clamped pile head 
in stiff clay (perfectly rough soil-pile interface). 

pile slenderness Lu (m) Le (m) critical buckling load factor 
L/D = 17.14 3.0 3.0 7.5847e6 

L/D = 14.28 3.0 2.0 7.3101e6 

L/D = 11.43 3.0 1.0 4.6771e6 
L/D = 10 3.0 0.5 1.9643e6 

 
Figure 4. Critical buckling load factor vs. global slenderness ratio 

for non-clamped head piles in clay. 

Similarly in clays, for cases when the pile head is clamped 
(Tables 5 to 7), the critical buckling load increases with 
embedment for a constant unsupported length of pile. How-
ever, the values of critical buckling load are higher and the 
rate of increase of Pcr, with respect to slenderness ratio, is 
more pronounced. This trend is depicted in Fig. 5. 
Table 5. Critical buckling load factors for a clamped pile head in 

soft clay (perfectly rough soil-pile interface). 
pile slenderness Lu (m) Le (m) critical buckling load factor 

L/D = 17.14 3.0 3.0 6.0535e6 
L/D = 14.28 3.0 2.0 4.2014e6 
L/D = 11.43 3.0 1.0 2.6627e6 

L/D = 10 3.0 0.5 1.6154e6 
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Table 6. Critical buckling load factors for a clamped pile head in 
medium clay (perfectly rough soil-pile interface). 

pile slenderness Lu (m) Le (m) critical buckling load factor 
L/D = 17.14 3.0 3.0 1.6559e7 
L/D = 14.28 3.0 2.0 1.1526e7 
L/D = 11.43 3.0 1.0 7.1883e6 

L/D = 10 3.0 0.5 4.320e6 

Table 7. Critical buckling load factors for a clamped pile head in 
stiff clay (perfectly rough soil-pile interface). 

pile slenderness Lu (m) Le (m) critical buckling load factor 
L/D = 17.14 3.0 3.0 4.9215e7 
L/D = 14.28 3.0 2.0 3.419e7 
L/D = 11.43 3.0 1.0 2.0829e7 

L/D = 10 3.0 0.5 1.2268e7 
 

 
Figure 5. Critical buckling load factor vs. global slenderness ratio 

for clamped head piles in clay. 

Tables 8 to 10 provide the FEM critical buckling load 
factors for a pile embedded respectively in a loose, medium 
and dense sand, having a non-clamped pile head. These 
results demonstrate that critical buckling load increases 
with embedment, and for a constant unsupported length of 
pile. These results are shown in Fig. 6, where the FEM 
critical buckling load is plotted as a function of the slender-
ness ratio. 
Table 8. Critical buckling load factors for a non-clamped pile head 

in loose sand (perfectly rough soil-pile interface). 
pile slenderness Lu (m) Le (m) critical buckling load factor 

L/D = 17.14 3.0 3.0 5.5203e6 
L/D = 14.28 3.0 2.0 4.1001e6 
L/D = 11.43 3.0 1.0 1.5295e6 

L/D = 10 3.0 0.5 5.1523e5 

Table 9. Critical buckling load factors for a non-clamped pile head 
in medium sand (perfectly rough soil-pile interface). 

pile slenderness Lu (m) Le (m) critical buckling load factor 
L/D = 17.14 3.0 3.0 6.5929e6 
L/D = 14.28 3.0 2.0 5.7394e6 
L/D = 11.43 3.0 1.0 2.6824e6 

L/D = 10 3.0 0.5 9.7032e5 

Table 10. Critical buckling load factors for a non-clamped pile 
head in dense sand (perfectly rough soil-pile interface). 

pile slenderness Lu (m) Le (m) critical buckling load factor 
L/D = 17.14 3.0 3.0 7.4824e6 
L/D = 14.28 3.0 2.0 7.1564e6 
L/D = 11.43 3.0 1.0 4.4092e6 
L/D = 10.00 3.0 0.5 1.8106e6 

 
Figure 6. Critical buckling load factor vs. global slenderness ratio 

for non-clamped head piles in sand. 

For sands, the cases when the pile head is clamped 
(Tables 11 to 13) also yields a critical buckling load that 
increases with embedment for a constant unsupported length 
of pile. However, values of the critical buckling load are 
higher and the rate of increase of Pcr, with respect to the 
slenderness ratio, is more pronounced. This trend is shown 
in Fig. 7.  
Table 11. Critical buckling load factors for a clamped pile head in 

loose sand (perfectly rough soil-pile interface). 
pile slenderness Lu (m) Le (m) critical buckling load factor 

L/D = 17.14 3.0 3.0 1.1902e7 
L/D = 14.28 3.0 2.0 8.3662e6 
L/D = 11.43 3.0 1.0 5.1147e6 

L/D = 10 3.0 0.5 2.9893e6 

Table 12. Critical buckling load factors for a clamped pile head in 
medium sand (perfectly rough soil-pile interface). 

pile slenderness Lu (m) Le (m) critical buckling load factor 
L/D = 17.14 3.0 3.0 2.1452e7 
L/D = 14.28 3.0 2.0 1.4982e7 
L/D = 11.43 3.0 1.0 9.2423e6 

L/D = 10 3.0 0.5 5.4736e6 

Table 13. Critical buckling load factors for a clamped pile head in 
dense sand (perfectly rough soil-pile interface). 

pile slenderness Lu (m) Le (m) critical buckling load factor 
L/D = 17.14 3.0 3.0 4.2262e7 
L/D = 14.28 3.0 2.0 2.9284e7 
L/D = 11.43 3.0 1.0 1.8013e7 

L/D = 10 3.0 0.5 1.0704e7 

 
Figure 7. Critical buckling load factor vs. global slenderness ratio 

for clamped head piles in sand. 

The previous cases just discussed, provide a limiting 
condition because the interface conditions are idealized as 
perfectly rough. However, as previously mentioned, the true 
interface roughness lies somewhere between the perfectly 
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smooth and perfectly rough cases. For this reason, the thin 
layer elastic interface elements are utilized to model the 
interface behaviour. These interface elements must be con-
strained in the normal direction with respect to shear, in 
order to limit the possibility of volume change. The follow-
ing equation for a thin elastic interface element is used in 
the analyses 

 
11 1 1

22 2 2

33 3 3

0 0
0 0
0 0

     
    ⋅ =    
    

     

r

r

r

k u F
k u F

k u F
, (26) 

where: k11, k22, k33 are the interface stiffnesses per unit area 
[N/m3]; u1r, u2r, u3r are the relative displacements [m]; and 
F1, F2, F3 represent the force per area as a function of exten-
sion [N/m2], respectively in the x, y and z direction. In order 
to limit volume change, the maximal permissible machine 
value of kii (1 ≤ i ≤ 3) in the direction normal to shear is 
imposed. In this study, this value is taken as 1e19 N/m3. 

Typical results demonstrating the effects of the interface 
stiffness values for an unclamped pile in a medium clay are 
shown in Fig. 8. 

 
Figure 8. Bracketing the surface roughness of the elastic interface 

thin element for a pile embedded in medium clay. 

In the above figure, the Pcr/PEu versus KR (KR = (EpIp)/ 
(E′sL4)) ratios, for different pile embedment lengths, confirm 
that the buckling behaviour is strongly affected by interface 
friction. The interface friction is bracketed by assume a 
perfectly rough: kt = 1e19 N/m3, and perfectly smooth: kt = 0, 
interface where the index t stands for the direction of shear 
or direction tangent to the pile surface. The value of normal 
stiffness in all cases is maintained as kn = 1e19 N/m3 in 
order to reduce the possibility of volume change. One 
cannot overstate this fact because thin layer elastic elements 
in COMSOL are continuum elements that are used as inter-
face elements. The real value of the interface stiffness is 
lurking somewhere between the limiting bracketed values. 
Simulations with interface values between these two confirm 
this fact. 

An interesting result, stemming from the present anal-
yses is the calculation of the normalized critical buckling 
load Pcr/PEu in terms of the soil stiffness E′s. From a practi-
cal point of view, the civil engineer must reconcile the pile 
with the surrounding medium. One way to achieve this is 
by curve fitting the nonlinear equation 
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Through the previously obtained Pcr/PEu versus KR curves, 
for various degrees of interface friction the typical values 
resulting from nonlinear regression analyses are presented 
in Tables 14 to 17. These coefficient values are valid for a 
nonlinear regression using 4 points (corresponding to 4 
FEM simulations). When more points or simulations are 
considered, the values of the coefficients change, but the 
overall trend or approximation is maintained. 

Table 14. Values of  Pcr/PEu -KR fitting relationship coefficients 
for non-clamped piles and interface of kn = 1e19 Pa/m and kt = 

1e10 Pa/m in clays. 
 a0 a1 a2 

Soft clay 2.37e+05 -2.37e+05 -2.46e+05 
Medium clay 1345301.184 -1.35e+06 -1.36e+06 

Stiff clay -5.96e+04 59672.91 50008.24 

Table 15. Values of  Pcr/PEu-KR fitting relationship coefficients for 
non-clamped piles and interface of kn =1e19 Pa/m and kt = 

1e10 Pa/m in sands. 
 a0 a1 a2 

Loose sand 4.80e+05 -4.80e+05 -4.92e+05 
Medium sand 887047.0675 -886935.8657 -901161.996 
Dense sand 3415624.941 -3415555.894 -3432978.38 

Table 16. Values of Pcr/PEu-KR fitting relationship coefficients for 
clamped piles and interface of kn = 1e19 Pa/m and kt = 1e10 Pa/m 

in clays. 
 a0 a1 a2 

Soft clay -2.18e+04 2.18e+04 2.21e+04 
Medium clay -1.01e+05 1.01e+05 1.02e+05 

Stiff clay -1.49e+06 1.49e+06 1.49e+06 

Table 17. Values of Pcr/PEu-KR fitting relationship coefficients for 
clamped piles and interface of kn = 1e19 Pa/m and kt = 1e10 Pa/m 

in sands. 
 a0 a1 a2 

Loose sand -7.42e+04 7.42e+04 7.50e+04 
Medium sand -3.26e+05 3.26e+05 3.28e+05 
Dense sand -1.12e+06 1.12e+06 1.12e+06 

For the cases where one considers an unclamped pile with 
a perfectly rough interface (kt = 1e19 N/m3, Figs. 9 and 10) 
in both clays and sands, the critical buckling load decreases 
as the stiffness of the surrounding medium decreases. A simi-
lar trend is observed in Figs. 11 and 12 but for a pile-soil 
interface of finite roughness or stiffness, of kt = 1e10 N/m3. 

On the other hand, the behaviour of a clamped head pile 
is rather unpredictable as shown in Figs. 13 and 14 (when 
interface friction is imposed). For clays (Fig. 13), the results 
indicate that the critical buckling load initially increases in 
order to attain a maximal value and then decreases as a 
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function of surrounding soil stiffness. For a clamped pile in 
sand, the critical buckling load decreases with soil stiffness 
to then level off at near asymptotic value (Fig. 14). 

 
Figure 9. Buckling behaviour curves of non-clamped piles with 

perfectly rough interface surface in clays. 

 
Figure 10. Buckling behaviour curves of non-clamped piles with 

perfectly rough interface surface in sands. 

 
Figure 11. Buckling behaviour curves of non-clamped with inter-

face of kn = 1e19 Pa/m and kt = 1e10 Pa/m in clays. 

 
Figure 12. Buckling behaviour curves of non-clamped with inter-

face of kn = 1e19 Pa/m and kt = 1e10 Pa/m in sands. 

As previously mentioned, nothing guaranties that a pile 
end is perfectly fixed when embedded in a soil continuum, 
and consequently this hypothesis is investigated. It is quite 
clear from the FEM results shown in Figs. 15 and 16 that 
assuming the pile tip to be fixed in the soil, yields critical 

buckling loads that are much lower than the cases when the 
pile end is free. This fact leads to economic versus safety 
issues when designing the pile for the critical buckling load. 
If the pile is embedded in a liquefiable soil then it should be 
extended to bedrock, and in such a particular case, fixity of 
the end could be assumed. 

 
Figure 13. Buckling behaviour curves of clamped with interface of 

kn = 1e19 Pa/m, and kt = 1e10 Pa/m in clays. 

 
Figure 14. Buckling behaviour curves of clamped with interface of 

kn = 1e19 Pa/m, and kt = 1e10 Pa/m in sands. 

 
Figure 15. Buckling behaviour curves of fixed- and free-end 

clamped piles with interface of kn = 1e19 Pa/m, and kt = 
1e10 Pa/m in clays. 
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Figure 16. Buckling behaviour curves of fixed- and free-end 

clamped piles with interface of kn = 1e19 Pa/m, and kt = 
1e10 Pa/m in sands. 

Finally, the issue of the existence of critical depth with 
regards to buckling is considered. FEM results in Figs. 17 
to 22 reveal its existence. The critical depth is defined as 
the embedded depth at which the critical buckling load is a 
maximum. This critical depth is present regardless of the 
soil type, or pile head restriction. The existence of this criti-
cal depth has important economic consequences. It is a 
phenomenon observed in other types of pile failures as well. 
Specifically, it is a well-known fact that the unit skin fric 

 
Figure 17. Critical depth for clamped piles with interface of kn = 

1e19 Pa/m, and kt = 1e10 Pa/m in soft clay and loose sand. 

 
Figure 18. Critical depth for clamped piles with interface of kn = 

1e19 Pa/m, and kt = 1e10 Pa/m in medium clay and medium sand. 

tion attains a maximal value at a certain depth. This could 
explain why a critical depth exists for pile buckling, although 
more studies are required to confirm this. 

 
Figure 19. Critical depth for clamped piles with interface of kn = 

1e19 Pa/m, and kt = 1e10 Pa/m in stiff clay and dense sand. 

 
Figure 20. Critical depth for non-clamped piles with interface of 
kn = 1e19 Pa/m, and kt = 1e10 Pa/m in soft clay and loose sand. 

 
Figure 21. Critical depth for non-clamped piles with interface of kn = 

1e19 Pa/m, and kt = 1e10 Pa/m in medium clay and medium sand. 

 
Figure 22. Critical depth for non-clamped piles with interface of kn = 

1e19 Pa/m, and kt = 1e10 Pa/m in medium clay and medium sand. 

CONCLUSION 

This study brings to light important aspects the civil 
engineer must consider when analysing the stability of piles 
embedded in soils (failure by buckling). As far as model-
ling is concerned, the soil-pile interface plays an important 
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role because of its influence on the resulting critical buck-
ling load. The value of critical buckling load, as demon-
strated in this study, is very sensitive to the value of the 
pile-soil interface stiffness one imposes. Consequently brack-
eting the stiffness coefficients, between perfectly smooth 
and perfectly rough values is necessary in design. Even 
more so in the field, because the value of interface friction 
is not easily obtained experimentally. 

The influence of the surrounding soil medium on the 
critical buckling load is unquestionable. In general, for 
similar embedment depths, interface conditions and pile 
head restraints, sands offer greater resistance then clays. 

One must realize that if piles are constructed in poten-
tially liquefiable soils then they should be extended all the 
way to bedrock. Moreover, in the advent of a seismic event, 
one can no longer rely on the surrounding liquefied medium 
for support. The pile stability is then calculated just like a 
typical column assuming a fixed end condition. This type of 
design is an exception rather than a rule. 

Finally, the existence of a critical depth concerning stabil-
ity of the pile is brought to light in the present study. It is 
clear that the surrounding soil medium confines the soil and 
consequently the critical buckling load increases with embed-
ment depth. However, this increase in the critical buckling 
load will reach a maximum value at a particular embedment 
depth with no further increase, if the depth of embedment is 
increased. It is too early to speculate about the reasons that 
explain this phenomenon without experimental as well as 
additional numerical studies. However, the critical depth of 
piles, with respect to the unit skin friction, is well docu-
mented in the literature and this could be a possible reason 
for the existence of the critical depth with respect to stability. 
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