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Abstract 

Delamination in nonlinear elastic multilayered double 
cantilever beam configurations of triple functionally graded 
materials is studied. The beam under consideration has an 
arbitrary number of longitudinal layers. Each layer has indi-
vidual thickness and material properties. Besides, the mate-
rial in each layer is functionally graded along the thickness, 
width and length of layer. A delamination crack is located 
arbitrary along the height of beam cross-section. Thus, the 
crack arms have different thicknesses. The beam is loaded 
by two bending moments of different magnitudes applied at 
the free ends of crack arms. The nonlinear fracture behav-
iour is studied in terms of the strain energy release rate. 
The solution derived is verified by analyzing the delamina-
tion crack with the help of the J-integral method. The solu-
tions obtained are applied to investigate the influences of 
various geometrical and material parameters on the nonlin-
ear delamination fracture in the considered multi-layered 
triple functionally graded beam configuration. 

Ključne reči 
• višeslojni nosač 
• nelinearno elastičan materijal 
• prslina delaminacije 
• funkcionalni gradijentni materijal 
• deformaciona energija 

Izvod 

Istražena je delaminacija kod konfiguracija tipa neli-
nearno elastičnog višeslojnog dvostruko usmerenog konzol-
nog nosača od trostruko gradijentnog materijala. Razma-
trani nosač ima proizvoljan broj longitudinalnih slojeva. 
Svaki sloj datu debljinu i osobine materijala. Pored toga, u 
svakom sloju je materijal funkcionalan gradijentan u prav-
cima debljine, širine i dužine sloja. Prslina delaminacije je 
proizvoljno locirana u pravcu visine poprečnog preseka 
nosača. Stoga su raslojeni delovi prsline različite debljine. 
Nosač je opterećen sa dva momenta savijanja različitog 
intenziteta na slobodnim krajevima raslojenih ligamenata 
prsline. Nelinearni lom je proučen s obzirom na brzinu 
oslobađanja deformacione energije. Dobijeno rešenje je 
provereno analiziranjem prsline delaminacije primenom 
metode J integrala. Dobijena rešenja se koriste za istraži-
vanje uticaja parametara geometrije i materijala na lom 
delaminacijom u konfiguracijama tipa višeslojnih trostruko 
gradijentnih nosača. 

INTRODUCTION  

Functionally graded materials play a vital role in the 
development of technologies in aerospace, microelectron-
ics, engineering, optics and biomedicine, /1-6/. Basically, 
this is due to the fact that functionally graded materials 
permit tailoring of their microstructure and composition of 
their constituent materials in one or more spatial coordi-
nates during manufacture (in this way, one can get optimum 
performance of structural members to external loads and 
influences, especially when the requirements of material 
properties are different in different parts of a member). 
Since macroscopic material properties of functionally graded 
materials vary smoothly, interfacial stress concentrations 
are eliminated which is one of the most important advantages 
of functionally graded materials over the laminated compo-
sites. Nevertheless, fracture is the earliest failure mode in 
structural members and components made of functionally 
graded materials. 

Multilayered materials are an interesting class of inho-
mogeneous materials with numerous applications in engi-
neering, electronics, aerospace and civil engineering. Multi-
layered materials are characterized by high strength to 
weight and stiffness to weight ratios in contrast to the tradi-
tional metal structural materials. Delamination fracture, i.e. 
separation of layers is crucial for structural integrity and 
durability of members and components made of multi-
layered materials. The importance of delemination fracture 
behaviour is confirmed by numerous investigations of vari-
ous layered beam structures which are carried out by apply-
ing methods of linear elastic fracture mechanics assuming 
linear elastic behaviour of multilayered materials, /7/. Delam-
ination fracture analyses of multilayered functionally graded 
beam configurations which exhibit nonlinear mechanical 
behaviour of the material are also performed, /8-12/. These 
analyses deal with multilayered beams made of materials 
which are functionally graded along the thickness or along 
the thickness and width of layers, /8-12/. 
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In this paper, analyses of a delamination crack in multi-
layered double cantilever beams made of materials which 
are functionally graded along the width, thickness and 
length of layers are developed. The nonlinear mechanical 
behaviour of the material is also taken into account in the 
delamination fracture analyses. Fracture is studied in terms 
of the strain energy release rate assuming that the coeffi-
cient in the power-law stress-strain relation is distributed 
continuously along the width, thickness and length of layers. 
The solution derived is verified by performing a delamina-
tion fracture analysis by applying the J-integral method. 
Parametric investigations of delamination fracture behaviour 
of the nonlinear elastic multilayered triple functionally 
graded beam configuration are carried out by using the 
solutions derived. For this purpose, effects of various 
geometrical and material parameters on the strain energy 
release rate and the J-integral are evaluated and discussed. 

THEORERTICAL MODEL 

The functionally graded multilayered double cantilever 
beam configuration analysed in the present paper is shown 
schematically in Fig. 1. The beam is made of an arbitrary 
number of horizontal layers. There is a delamination crack 
of length, a, located arbitrary along the beam height. The 
thicknesses of lower and upper crack arms are h1 and h2, 
respectively. Perfect adhesion is assumed between layers. 
Besides, each layer has individual thickness and material 
properties. 

 
Figure 1. Schematic of the functionally graded multilayered 

double cantilever beam configuration. 

The beam is loaded by two external moments, M1 and 
M2, applied on the free ends of lower and upper crack arms, 
respectively. The beam is clamped in section B. The cross-
section of beam is a rectangle of width, b, and height, 2h. 
The mechanical behaviour of the material is described by 
the following power-law stress-strain relation: 

 σ ε= im
i iD ,   i = 1, 2, …, n, (1) 

where: ε is the distribution of longitudinal strains; σi is the 
distribution of longitudinal normal stresses in the i-th layer; 
Di and mi are material properties in the same layer; n is the 
number of layers. 

In each layer, the material is functionally graded along 
the width, thickness and length of the layer. In the cross-
section of the i-th layer, the distribution of Di is described 
by the following equation: 

 
4 2
3 3

0 4 2
16

= + +
i ii K L

y z
D D D D

b h
,   i = 1, 2, …, n, (2) 

where: D0 is the value of Di in the centre of the beam cross-
section; DKi and DLi are material properties which govern 
the material gradient along the width and thickness of the 
layer, respectively. 

The centroidal axes, y3 and z3, are shown in Fig. 1. The 
distribution of D0 along the length of the beam is written as 

 
4
3

0 4= +Q T
x

D D D
l

, (3) 

where: DQ is the value of D0 in the free end of the beam; DT 
is a material property which governs the material gradient 
along the beam length; x3-axis is defined in Fig. 1. One can 
summarize that Eqs.(2) and (3) describe the distribution of 
D0 in the multilayered beam under consideration. 

The delamination fracture behaviour is analysed in terms 
of the strain energy release rate by applying the following 
formula, /8/: 

 
*

=
dUG
bda

, (4) 

where: da is an elementary increase of the delamination 
crack length; dU* is the change of complementary strain 
energy. 

The beam complementary strain energy is written as 
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 (5) 

where: u*
0di, u*

0gi and u*
0ri are the complementary strain 

energy densities in the i-th layer of the lower crack arm, 
upper crack arm, and un-cracked beam portion (a ≤ x3 ≤ l), 
respectively. 

Axes, x1, y1 and z1, are shown in Fig. 2, x2, y2 and z2 are 
the centroidal axes of the cross-section of upper crack arm 
(z2 is directed downwards), x4, y4 and z4 are the centroidal 
axes of the cross-section of un-cracked beam portion (z4 is 
directed downwards), nd and ng are the numbers of layers in 
the lower and the upper crack arms, respectively. 
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Figure 2. Geometry and loading of the free end of the lower crack 

arm (n1 – n1 is the neutral axis). 

The complementary strain energy density in the i-th 
layer of lower crack arm is expressed as, /10/, 
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The distribution of strains is analysed by applying the 
Bernoulli’s hypothesis for plane sections since the span to 
height ratio of the considered beam is large. Concerning the 
application of Bernoulli’s hypothesis in the present paper, it 
should also be mentioned that since the beam is loaded in 
pure bending (Fig. 1), the only non-zero strain is the longi-
tudinal strain, ε. Therefore, according to the small strain 
compatibility equations, ε is distributed linearly along the  

height of the beam cross-section. Thus, ε in the lower crack 
arm is written as 
 

11 1 1( )ε κ= − nz z , (7) 

where: z1n1 is the coordinate of the neutral axis; κ1 is the 
curvature of the lower crack arm. It should be noted that the 
neutral axis, n1 – n1, shifts from the centroid since the beam 
is multilayered and functionally graded, Fig. 2. 

Quantities z1n1 and κ1, in an arbitrary cross-section of the 
lower crack arm are determined from the following equilib-
rium equations: 
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where: N1 and My1 are the axial force and bending moment, 
respectively. The coordinates z1i and z1i+1, are shown in 
Fig. 2. Obviously, 
 N1 = 0,   My1 = M1. (10) 

In order to express the distribution of material property, 
Di, in the cross-section of the i-th layer of the lower crack 
arm, Eq.(2) is re-written as 
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where: βd = h – h1/2. Then by substituting Eqs.(1), (2) and 
(7) in Eqs.(8) and (9), one derives 
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where: δi = z1i+1 – z1n1, λi = z1i – z1n1, and fi /qi = mi (fi and qi 
are positive integers). 

Equations (12) and (13) should be solved with respect to 
z1n1 and κ1 by applying the MatLab computer program. It 
should be mentioned that Eqs.(12) and (13) can be used to 
determine z1n1 and κ1 in any cross-section of the lower 
crack arm. The only difference in various cross-sections is 
the value of D0 that is determined by Eq.(3). 

By substituting Di and ε in Eq.(6), the distribution of 
complementary strain energy density in the i-th layer of the 
lower crack arm is re-written as 

1

1124 1 1 1* 11
0 0 4 2

( )( )16
1

κβ
++  −+

= + + 
+  

ii

i i

mm
i nd

d K L
i

m z zzy
u D D D

mb h
(14) 

Equation (14) can also be used to calculate the distribu-
tion of complementary strain energy density, u*

0gi, in the i-th 



Delamination in nonlinear elastic multilayered beams of triple … Delaminacija nelinearno elastičnih višeslojnih nosača od … 
 

INTEGRITET I VEK KONSTRUKCIJA 
Vol. 18, br. 3 (2018), str. 163–170 

STRUCTURAL INTEGRITY AND LIFE 
Vol. 18, No 3 (2018), pp. 163–170 

 

166 

layer of the upper crack arm. For this purpose, y1, z1, βd, z1n1 
and κ1 have to be replaced respectively with y2, z2, βg, z2n2 
and κ2, where βg = –h + h1/2, z2n2 and κ2 are the neutral axis 
coordinate and the curvature of the upper crack arm. The 
quantities, z2n2 and κ2, can be obtained from equilibrium 
Eqs.(12) and (13). For this purpose, nd, My1, z1i, z1i+1, βd, z1n1 
and κ1 have to be replaced with ng, M2, z2i, z2i+1, βg, z2n2 and 
κ2, respectively. 

Equation (14) can also be applied to calculate the distri-
bution of complementary strain energy density, u*

0ri, in the 
i-th layer of the un-cracked beam portion. For this purpose, 

y1, z1, βd, z1n1 and κ1 have to be replaced with y4, z4, 0, z4n4 
and κ4, respectively (z4n4 and κ4 are the neutral axis coordi-
nate and the curvature of the un-cracked beam portion, in 
respect). Equations (12) and (13) can be used to determine 
z4n4 and κ4. For this purpose, nd, My1, z1i, z1i+1, βd, z1n1 and κ1 
have to be replaced with n, M1 – M2, z4i, z4i+1, 0, z4n4 and κ4, 
respectively.  

By substituting u*
0di, u*

0gi, u*
0ri and Eq.(5) in Eq. (4), one 

derives the following formula for the calculation of strain 
energy release rate in the functionally graded multilayered 
double cantilever beam: 
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where: mui = mi + 1, fui /qui = mui (fui and qui are positive 
integers), δgi = z2i+1 – z2n2, λgi = z2i – z2n2, δri = z4i+1 – z4n4 and 
λri = z4i – z4n4. In Eq.(15), D0, z1n1, κ1, z2n2, κ2, z4n4 and κ4 are 
obtained by Eqs.(3), (12) and (13) at x3 = a. Thus, Eq.(15) 
can be applied to calculate the strain energy release rate at 
any crack length in the interval, 0 ≤ a ≤ l. 

The delamination fracture is analysed also by applying 
the J-integral approach, /13/, in order to verify Eq.(15). The 
J-integral is solved by using the integration contour, Γ, 
shown by dashed line in Fig. 1. It is obvious that the J-
integral value is non-zero only in segments, Γ1, Γ2 and Γ3, 
of the integration contour (Γ1, Γ2 and Γ3 coincide with the 
free end of the lower crack arm, the clamping and the free 
end of the upper crack arm, respectively). Therefore, the J-
integral solution is written as 
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where: JΓ1, JΓ2 and JΓ3 are the J-integral values in segments 
Γ1, Γ2 and Γ3, respectively. 

The J-integral in segment Γ1, is written as 

 
1 1

1
1

0
1

cosα
+

Γ
=

 ∂ ∂ = − +  ∂ ∂  
∑ ∫

id

i
i

zn
d xi yi

i z

u vJ u p p ds
x x

, (17) 

where: α is the angle between the outwards normal vector 
to the contour of integration and crack direction; pxi and pyi 
are the components of stress vector in the i-th layer of the 
lower crack arm; u and v are the components of displace-
ment vector with respect to the crack tip coordinate system 
xy (x is directed along the crack); ds is a differential element 
along the contour. 

The J-integral components in segment Γ1 of the integra-
tion contour are written as 

 σ ε= − = − im
xi i ip D ,    0=yip , (18) 

 1=ds dz ,    cos 1α = − , (19) 
where: coordinate z1 varies in the interval [–h1/2, h1/2]. 

The strain energy density in the i-th layer of the lower 
crack arm is obtained as, /10/, 
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. (20) 

The partial derivative ∂u/∂x that participates in Eq.(17) is 
written as 

 
11 1 1( )ε κ∂

= = −
∂ n
u z z
x

. (21) 

By combining Eqs.(1), (17), (18), (19), (20) and (21), the 
solution of JΓ1 is derived as 
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where: z1n1 and κ1 are determined from Eqs.(12) and (13). 
In Eq.(23) the coordinate y1 varies in the interval [–b/2, b/2]. 

Equation (22) can be applied also to obtain the solution 
of J-integral in segment Γ2 of the integration contour (Fig. 1). 
For this purpose, nd, z1i, z1i+1, βd, δi, λi, z1n1 and κ1 have to 
be replaced with n, z4i, z4i+1, 0, δri, λri, z4n4 and κ4, in respect. 
Besides, the sign of Eq.(23) must be set to ‘minus’ since the 
contour of integration is directed upwards in segment Γ2. 

 
 
Also, Eq.(22) is applied to obtain the J-integral solution 

in segment Γ3, of the integration contour (Fig. 1). For this 
purpose, nd, z1i, z1i+1, βd, δi, λi, z1n1 and κ1 are replaced with 
ng, z2i, z2i+1, βg, δgi, λgi, z2n2 and κ2, respectively. 

The J-integral solution is derived by substituting JΓ1, JΓ2 
and JΓ3 in Eq.(17): 
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Equation (23) describes the distribution of J-integral 
value along the delamination crack front since –b/2 ≤ y1 ≤ 
b/2. It should be mentioned that the parameters, D0, z1n1, κ1, 
z2n2, κ2, z4n4 and κ4, which are involved in Eq.(24) are 
determined by Eqs.(3), (12) and (13) at x3 = a. Thus, one 
can use Eq.(23) to investigate the J-integral value distribu-
tion along the crack front at any crack length in the interval 
0 < a < l. 

The average value of J-integral along the delamination 
crack front is written as 

 2
1

2

1
−

= ∫
b

AV bJ Jdy
b

. (24) 

It should be mentioned that the J-integral obtained by 
substituting Eq.(23) in Eq.(24) matches exactly Eq.(15) for 
the strain energy release rate. This fact is a verification of 
the delamination fracture analysis of the nonlinear elastic 
multilayered triple functionally graded beam configuration 
developed in the present study. 
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NUMERICAL RESULTS AND DISCUSSION 

The effects of crack location along the height of the 
beam cross-section, the material gradients along the width, 
thickness and length of layers, the nonlinear mechanical 
behaviour of the material and the crack length on the 
delamination fracture in the multilayered triple functionally 
graded beam are evaluated. For this purpose, calculations of 
the strain energy release rate are carried-out by applying 
Eq.(15). Two functionally graded beam configurations 
made of three longitudinal layers are considered in order to 
evaluate the influence of the crack location along the height 
of the beam cross-section (Fig. 3). The thickness of each 
layer is tl. In the configuration shown in Fig. 3a the crack is 
located between layers 2 and 3. A delamination crack 
between layers 1 and 2 is also analysed (Fig. 3b). It is 
assumed that b = 0.010 m, h = 0.0015 m, tl = 0.001 m, M1 = 
15 Nm and M2 = 20 Nm. The strain energy release rate is 
presented in non-dimensional form by using the formula 
GN = G/(DQb). The material gradient along the width of 
layer 3 is characterized by DK3/DQ ratio. The position of the 
delamination crack front along the beam length is charac-
terized by a/l ratio. It is assumed that DK1/DQ = 0.6, 
DL1/DK1 = 0.7, DK2/DQ = 0.7, DL2/DK2 = 0.8, DL3/DK3 = 2, 
DT /DQ = 0.5, a/l = 0.3, m1 = m2 = m3 = 0.8, f1 = f2 = f3 = 8, 
q1 = q2 = q3 = 10, mu1 = mu2 = mu3 = 1.8, fu1 = fu2 = fu3 = 18 
and qu1 = qu2 = qu3 = 10. The strain energy release rate in 
non-dimensional form is plotted against DK3/DQ ratio in 
Fig. 4 for the two three-layered functionally graded beam 
configurations (refer to Fig. 3). The curves in Fig. 4 
indicate that the strain energy release rate decreases with 
increasing of DK3/DQ ratio. This finding is attributed to the 
increase of the beam stiffness. Figure 4 shows also that the  

 

 
Figure 3. Two three-layered functionally graded double cantilever 
beam configurations with a delamination crack located between 

(a) layers 2 and 3 and (b) layers 1 and 2. 

strain energy release rate increases when the crack location 
changes from this in Fig. 3a to that in Fig. 3b. 

 
Figure 4. The strain energy release rate in non-dimensional form 
plotted against DK3/DQ ratio (curve 1 - for crack located between 
layers 2 and 3 and curve 2 - for crack between layers 1 and 2). 

The influence of DL3/DQ ratio on the delamination frac-
ture is also analysed. The beam configuration shown in 
Fig. 3a is considered. The strain energy release rate in non-
dimensional form is plotted against DL3/DQ ratio at 
DK3/DQ = 0.5 in Fig. 5. It can be observed that the strain 
energy release rate decreases with increasing of DL3/DQ 
ratio (Fig. 5). The effect of nonlinear mechanical behaviour 
of material on the delamination fracture is evaluated too. 
For this purpose, the strain energy release rate derived 
assuming linear-elastic behaviour of the functionally graded 
material is shown in non-dimensional form as a function of 
DL3/DQ ratio in Fig. 5 for comparison with the nonlinear 
solution (the linear-elastic solution is obtained by substitut-
ing m1 = m2 = m3 = 1 in Eq.(15)). The curves in Fig. 5 
indicate that the material nonlinearity leads to increase of 
the strain energy release rate. 

 
Figure 5. The strain energy release rate in non-dimensional form 
presented as a function of DL3/DQ ratio (curve 1 – at nonlinear 

elastic behaviour of the material, curve 2 – at linear-elastic 
behaviour of the material). 

The effect of material gradient along the beam length on 
the nonlinear delamination fracture behaviour is analysed 
too. The beam configuration shown in Fig. 3a is investi-
gated. The material gradient along the beam length is charac-
terized by DT/DQ ratio. 

The strain energy release rate in non-dimensional form is 
plotted against DT /DQ ratio in Fig. 6 at two a/l ratios. One 
can observe in Fig. 6 that the strain energy release rate 
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decreases with increasing of DT /DQ ratio (this behaviour is 
due to the increase of the beam stiffness). It can be 
observed also that the strain energy release rate decreases 
with increasing of a/l ratio (Fig. 6). This finding is explained 
with increase of the value of D0 in the beam cross-section in 
which the delamination crack front is located. 

 
Figure 6. The strain energy release rate in non-dimensional form 

presented as a function of DT/DQ ratio (curve 1 – at a/l = 0.3, 
curve 2 – at a/l = 0.6). 

The influence of material gradient on the distribution of 
the J-integral value along the delamination crack front is 
investigated. For this purpose, calculations are performed 
by using Eq.(23). Coordinate y1, is varied in the interval    
[–b/2, b/2]. The J-integral value is presented in non-dimen-
sional form by using the formula JN = J/(DQb). The beam 
configuration shown in Fig. 3a is considered. Two patterns 
of material gradient are analysed. Pattern 1 is characterized 
by DK1/DQ = –0.4, DL1/DK1 = 1.5, DK2/DQ = –0.4, DL2/DK2 = 
2, DK3/DQ = –0.4 and DL3/DK3 = 1.2. Pattern 2 of material 
gradient is characterized by DK1/DQ = 1.3, DL1/DK1 = 1.5, 
DK2/DQ = 1.3, DL2/DK2 = 2, DK3/DQ = 1.3 and DL3/DK3 = 1.2. 
The distribution of the J-integral value in non-dimensional 
form along the delamination crack front at the two patterns 
of material gradient is presented in Fig. 7 at a/l = 0.3. Only 
the right-hand half of the delamination crack front is shown 
in Fig. 7 since the distribution is symmetrical with respect 
to the crack front centre. The horizontal axis is defined such 
that 2y1/b = 0.0 is in the delamination crack front centre. 
Thus, 2y1/b = 1 is in the right-hand lateral surface of the 
beam. It can be observed in Fig. 7 that for pattern 1 the J- 

 
Figure 7. The distribution of the J-integral value in non-dimen-

sional form along the delamination crack front (curve 1 - at pattern 
1 of material gradient, curve 2 – at pattern 2 of material gradient, 
curve 3 – at pattern 3 of material gradient, curve 4 at pattern 4 of 

material gradient).  

integral value is minimal in the crack front centre and grad-
ually increases towards the right-hand lateral surface of the 
beam. Thus finding is attributed to the fact that for pattern 1 
the material property, Di, gradually decreases towards the 
beam lateral surfaces. Figure 7 shows also that for pattern 2 
the J-integral value decreases towards the right-hand lateral 
surface of the beam. 

The distribution of the J-integral value along the delami-
nation crack front is analysed also at pattern 3 and pattern 4 
of material gradient. 

Pattern 3 is characterized by DK1/DQ = –0.2, DL1/DK1 = 1.5, 
DK2/DQ = –0.2, DL2/DK2 = 2, DK3/DQ = –0.2 and DL3/DK3 = 
1.2, while pattern 4 is characterized by DK1/DQ = 1.2, 
DL1/DK1 = 1.5, DK2/DQ = 1.2, DL2/DK2 = 2, DK3/DQ = 1.2 and 
DL3/DK3 = 1.2. The distribution of the J-integral value along 
the delamination crack front for patterns 3 and 4 is shown 
also in Fig. 7. 

The effect of the delaminaton crack length on the J-inte-
gral value distribution along the crack front is also investi-
gated. For this purpose, the J-integral value distribution 
along the crack front is shown in Fig. 8 at two a/l ratios for 
pattern 1 of material gradient. The curves in Fig. 8 indicate 
that the J-integral value decreases with increasing of the 
crack length. Besides, the J-integral value increases towards 
the beam lateral surface. 

 
Figure 8. The distribution of the J-integral value in non-dimen-

sional form along the delamination crack front (curve 1 – at a/l = 
0.3, curve 2 – at a/l = 0.6). 

CONCLUSIONS 

Analyses of the delamination fracture in nonlinear elastic 
multilayered double cantilever beams made of materials 
which are functionally graded along the width, thickness 
and length of layers are developed. The fracture behaviour 
is studied in terms of the strain energy release rate. The 
solution derived is verified by analysing the fracture with 
the help of the J-integral. It should be noted that the solu-
tion to the J-integral obtained in the present paper can be 
used to investigate the distribution of the J-integral value 
along the crack front as a function of the crack length. The 
solution to the strain energy release rate is applicable for 
beams made of an arbitrary number of layers. Also, each 
layer has individual thickness and material properties. 
Besides, the material in each layer is triple functionally 
graded. The delamination crack is located arbitrary along 
the height of the beam cross-section. The solution derived 
is applied to evaluate the effects of crack location, material 
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gradients in width, thickness and length directions of layers, 
crack length and nonlinear mechanical behaviour of the 
material on the delamination fracture. The analysis reveals 
that the strain energy release rate decreases with increasing 
of DK3/DQ, DL3/DQ and DT /DQ ratios. This finding is 
attributed to the increase of the beam stiffness. The depend-
ency of the distribution of the J-integral value along the 
delamination crack front on the material gradients is inves-
tigated too. It is found that the J-integral value is distributed 
non-uniformly along the delamination crack front (the distri-
bution is strongly influenced by the material gradient along 
the beam width). The analysis shows also that the J-integral 
value decreases with increasing of the crack length. The 
nonlinear elastic solution for the strain energy release rate is 
compared with the linear-elastic one. It is found that the 
material nonlinearity leads to increase of the strain energy 
release rate. The effect of the crack length on the fracture 
behaviour is also investigated. It is found that the strain 
energy release rate decreases with increasing of the crack 
length (this is due to the increase of the value of D0 in the 
beam cross-section in which the crack front is located). 
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