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Abstract 

The paper deals with the heat input and maximum tem-
perature that develops in friction stir welding with different 
welding parameters. The finite element method has been 
used for numerical analysis of temperature distribution in a 
friction stir welded Al alloy. Results of temperature distri-
bution in the friction stir welded T-joint and butt joint are 
presented. 

Ključne reči 
• zavarivanje trenjem sa mešanjem 
• aluminijumske legure 
• numerička analiza 
• temperaturna polja 

Izvod 

Razmatra se unos toplote tokom zavarivanja trenjem sa 
mešanjem, sa fokusom na maksimalnu vrednost tempera-
ture pri različitim parametrima zavarivanja. Metoda konač-
nih elemenata je primenjena na Al legure zavarene trenjem 
sa mešanjem. Prikazane su raspodele temperaturnih polja 
kod T-spoja i kod sučeonog spoja. 

INTRODUCTION 

Friction stir welding (FSW) is a recent method of weld-
ing in the solid state. In FSW, a cylindrical shouldered tool 
with a profiled probe, also called pin, is rotated and slowly 
plunged into the joint line between two pieces of sheet or 
plate material which are butted together, Fig. 1, /1/. The 
shoulder applies pressure to constrain the already deformed 
material around the probe tool. Positions of the FSW tool, 
working plates and welding direction are shown in Fig. 1. 

In the friction stir welding process, heat is generated by 
friction between tool and workpiece. This heat flows into 
the workpiece as well as into the tool. The amount of heat 
conducted into the workpiece determines the quality of 
weld, residual stress, and distortion of the workpiece. The 
amount of the heat that flows into the tool dictates its life 
and capability for the joining process. 

 
Figure 1. Simplified representation of FSW - butt joint. 

In this paper the finite element method (FEM) is used to 
simulate temperature distribution in the workpiece. The 
discussion concerning the FSW process is given and is 
focused on differences in T- and butt joints. The results 
show that the majority of the heat generated from friction, 
i.e., about 95%, is transferred into the workpiece and only 
5% flows into the tool and the fraction of the rate of plastic 
work dissipated as heat is about 80%, /2-4/. 

NUMERICAL ANALYSIS 

The modelling of the FSW welding process allows to 
visualize the fundamental behaviour of welded materials, 
and to study the influence of different welding parameters, 
including the design of the tool and boundary conditions, 
without performing costly experiments. The FSW model-
ling is a difficult task, because of its complex features. The 
process combines heat flow, high temperature, plastic 
deformation and microstructure evolution. Nowadays, the 
numerical simulation of the FSW process may not only be 
used to optimize the process. Increased knowledge pro-
duced based on the FSW process simulation can lead to 
replace experimental tests in the near future. This will help 
promote and expand the FSW process to a wider range of 
different applications. 

Numerical simulations are made for the FSW process of 
two Al alloy working plates in order to obtain the T-joint 
(Fig. 2a) and butt joint (Fig. 2b). Two different FEM 
solvers were used, one for the T-joint (AA 5754) and 
another for the butt joint (AA 6061), /4/. 
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Figure 2. Mesh model of: a) T-joint and, b) butt joint. 

Heat generation model 

The heat transfer process is one of the most important 
aspects of the FSW study. A good understanding of the heat 
transfer process in the working plates can be helpful in 
predicting the thermal cycles, and the hardness in the weld-
ing zone, subsequently, can be helpful in evaluating the 
weld quality. Significant progress has recently been made 
of FSW heat transfer modelling, /4-8/. 

In the FSW process, the heat is generated near the 
contact surfaces, which may have complex geometries 
depending on the tool shape. However, for the used model, 
the surface of the tool is assumed to be cylindrical with a 
horizontal shoulder. The welding tool is shown in Fig. 2b, 
where rshoulder is the shoulder radius, rprobe and hprobe are the 
probe radius and height, respectively. 

The following assumptions are: 
• heat generated at the shoulder of the welding tool/work-

ing plate interface is frictional heat, 
• probe of welding tool is a cylinder, since the thread of the 

probe can be neglected, 
• heat does not flow into the working plates if the local 

temperature reaches the material melting temperature. 
The generated heat in the thermo-mechanical welding 

process occurs in two areas, Fig. 3, /9-11/: 
1. Forehead of shoulder, i.e. the heat generated at shoulder 

of tool/working plate interface, where the size of the area 
of the top of shoulder is: 

 2
shoulder shoulderA r  (1) 

2. Around the tool probe, i.e. the heat generated at the 
probe of tool/plate interface, where the generated heat is 
modelled like a hole in the working plates, with area of 
probe given as: 

  (2) 22probe probe probe probeA h r r  

The heat generated by the probe is estimated to be only 
2% of the total heat generated during the FSW process. 
However, this ratio is estimated 20% by some researchers, 
/9-12/. 

 
Figure 3. Two areas where the heat is generated in the welding 

process. 

The total heat flux is split into the shoulder-flux (friction 
driven) and probe-flux (plasticity driven), /3/: 

 2
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generated by friction contact of surface forehead at the top 
of the shoulder and the upper surface of the working plate, 
/9/, where  is the coefficient of friction, taken as constant 
here:  = 0.3. It was not possible to measure the pressure 
force, so its value is also taken as a constant, Fn = 15 kN. 
Finally, vrot is the speed of rotation of the welding tool, also 
assumed to have a constant value, /8/. Heat generated by 
plastic deformation, qprobe, is modelled by using expression 

2

23(1 )

probe probe roth r v


, where  (N/mm2) is a yield stress of 

the working plate material. 
As for the analysis of heat flow, numerical models can 

use either Eulerian formulation, Lagrangian formulation, or 
a combination of both (hybrid solution Lagrange-Eulerian). 
During the FSW process, the tool is moved with a constant 
speed along the joint line. The heat transfer control equa-
tion for the plates, in the case of Eulerian formulation with 
convection, can be written in following form, /8-9/: 

 ( ) wel

T
c k T q cv

dt
 

T       (4) 

If the process is stationary, the first member in Eq.(4) is 

zero, i.e. 0
T

c
dt

 
 . Thus, Eq.(4) is reduced to: 

 0 ( ) welk T cv T q       (5) 

Quantities used in Eqs.(4-5) are defined in Table 1. 
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Table 1. Quantities in Eqs.(4-5). 

 (kg/m3) density 

c (J/kgK) heat capacity 

T (K) temperature 

t (s) time 

x y z

  
   

  
 differential operator 

k (W/mK) heat conductivity 

q (W/m2) heat input 

vwel (m/s) welding speed 

Boundary conditions 

Boundary and initial conditions for the T-joint are shown 
in Fig. 4, and for the butt joint in Fig. 5. Free surfaces are 
supposed to obey convection boundary conditions – upper 
surface exposed to room temperature air; the bottom 
surface is in a firm contact with the back plate of stainless 
steel type 304 for the T-joint, and L-316 for the butt joint. 
All materials and thermo dynamical parameters are used 
from literature data, typical for 5754 and 6061 aluminium 
alloys, /3/. 

 
Figure 4. Boundary conditions for the T-joint. 

 
Figure 5. Boundary conditions for the butt joint. 

Four boundary conditions are used. There are two con-

vection boundary conditions, ( o
T

k h T T
n


 



The remaining two boundary conditions are: q1 - the heat 
flux boundary condition for the plate at the shoulder/ plate 
interface; and q2 - the heat flux boundary condition at the 
probe/plate interface. 

Expressions for q1 and q2 are similar and are calculated 
according to: 

 
T

k
n





q  (6) 

Welding parameters and dimensions of the welding tool 
used for the numerical simulation of the FSW process are: 
vwel = 1.59 mm/s; vrot = 500 rpm; hA = 12.25 W/m2K; hb = 
6.25 W/m2K; TAl-melting = 933 K; rprobe = 3 mm; rshoulder = 
13 mm; hprobe = 5 mm; k = 160 W/mK;  = 2700 kg/m3 and 
c = 900 J/kgK. These parameters are the same for both 
joints. 

NUMERICAL RESULTS 

Temperature distributions through cross section of the T- 
and butt joint in the direction of the joint line (x-axis) are 
shown in Figs. 6 and 7, respectively. As expected, the 
temperature values are presented in the area immediately 
around heat sources, i.e. forehead on the top of shoulder 
and near the probe. In both cases, the thickness of the plates 
is 6 mm. 

The maximum value of temperature that occurs during 
numerical simulation of the T-joint is 662°C, Fig. 6. Results 
for the butt joint are shown in Fig. 7, indicating that the 
maximum temperature is 553°C. 

Figure 8 shows the distribution of temperature fields in 
the T-joint, seen from the side where the plates are in 
contact with the backing plates. 

 
Figure 6. Temperature fields in the x-y plane, /4/. 

 

) , one for all 

plate surfaces exposed to air, and the second for all plate 
surfaces exposed to backing plates. The variable n is the 
normal direction vector of boundary on the surface of the 
plate; h is the coefficient heat convection from the plates to 
ambient air; and T0 represents the temperature of ambient 
air. 

Figure 7. Temperature distribution (FEM) study, /4/. 
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Based on the results and discussion, one can conclude 
that the numerical simulation can be a powerful tool to 
estimate the heat effects in FSW, and thus, to predict the 
quality of the welded joints. 
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Figure 9. a) single pass weld; b) two-pass weld. 
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