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Abstract 

The purpose of the paper is to present the study of elastic 
-plastic stress analysis in a spherical shell under the com-
bined effect of pressure and temperature. The solution of 
the problem is obtained by using the concept of generalized 
strain measures and Seth's transition theory. It has been 
seen that circumferential stress has a maximum at the 
external surface of the spherical shell made of incompressi-
ble- as well as compressible materials. The thermal effect 
increases the values of stresses. 
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Izvod 

Cilj ovog rada je prikaz istraživanja elastoplastične 
analize napona sferne ljuske pri istovremenom dejstvu unu-
trašnjeg pritiska i temperature. Rešenje problema je dobije-
no korišćenjem koncepta generalisane mere deformacija i 
teorija prelaznih napona Seta. Uočeno je da napon po 
obimu ima maksimum na spoljašnjoj površini sferne ljuske 
od nestišljivih ili stišljivih materijala. Toplotni uticaj pove-
ćava vrednosti napona. 

 

INTRODUCTION 

These days, thermal investigation of the elastic-plastic 
stresses found in spherical shells under pressure has been a 
point of interest of engineers because of advanced technical 
developments in the areas such as high speed and high power 
space engines, nuclear industry for power generation, etc. In 
various cases of steam turbine design, high-speed centrifugal 
separators, gas turbines and diesel engines, the thermal elas-
tic-plastic stresses are of great practical significance. The 
occurrence of a combined effect of high temperature and 
pressure, particularly in the mechanical and chemical indus-
tries, has led to new advancements in the manufacture of 
spherical shells. The elastic properties of various metals are 
highly dependent on temperature and the presence of pres-
sure. Metals exhibit all types of distortion in behaviours such 
as plastic, creep, fracture, buckling, etc., as materials attain 
plastic behaviour easily in the presence of high pressure and 
temperature, due to which this problem is important in the 
design of oil and chemical plants, steam and gas turbines, 
high speed centrifugal structures and so on. The problem of 
elastic-plastic- and creep analysis in pipes, shells, cylinders, 
under internal pressure with thermal effect have been dis-
cussed, /1/. Johnson et al. /2/ have discussed the effect of 
temperature on the thick spherical shell subjected to internal 

pressure. Rimrott /3/ discussed the creep of thick-walled tube 
under internal pressure considering large strains under the 
assumptions of constant density, zero axial strain and distor-
tion energy law to calculate creep stresses and strain rates in 
the thick-walled closed end hollow cylinder made of iso-
tropic material under uniform pressure. Eberlein et al. /4/ 
used the finite element concept to find elastoplastic strains 
and the isotropic stress response in shells and has discussed 
the three parameterization strategies for calculating stresses 
in arbitrary shells. Civalek et al. /5/ have done the free vibra-
tional analysis of rotating shells by using discrete singular 
convolution technique. All these authors mentioned above 
have analysed the problems considering the assumptions: (i) 
incompressibility condition; (ii) creep-strain laws, like 
Norton; (iii) yield condition, like that of Tresca; (iv) associ-
ated flow rule. Thakur /7/ has analysed creep transition 
stresses in a thick isotropic spherical shell by finitesimal 
deformation under steady state temperature and internal pres-
sure by using the Seth transition theory. The necessity of use 
of these ad-hoc semi-empirical laws in the classical theory of 
elastic-plastic transition is based on the approach that the 
transition is a linear phenomenon, which is not possible. 
Under elastic-plastic and creep transition, the fundamental 
structure of an object undergoes a change and rearranges 
such to cause nonlinear effects. Therefore, it suggests that at 
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transition behaviour, nonlinear terms are significant and 
cannot be ignored. The classical theory of elasticity, plastic-
ity and creep makes use of the linear strain measure. But we 
have shown that transition fields are sub-harmonic (super-
harmonic) fields and that they are nonlinear and non-con-
servative in character and hence, it is very important that a 
nonlinear strain measure such as the Almansi measure should 
be used in the constitutive equation. The recognition of tran-
sition state or mid-zone as a separate state necessitates show-
ing the existence of the constitutive equation for that state. In 
this context, we have used Seth’s transition theory to obtain 
the stresses and strains in the transition state, and the same 
may be obtained from the plastic state when a certain param-
eter C = 1 – 2/1 − ; where  is the Poisson’s ratio of the 
material, is made to approach zero. From these solutions, the 
constitutive equations for both transition and plastic states are 
obtained, the latter takes the form of the Levy-von-Mises 
equation. In nature, transitions do occur frequently and the 
existing classical theory fails to explain them successfully. 
Thus the transition theory, as it stands, now can be fruitfully 
exploited to explain a variety of physical phenomena and 
hence, has a very wide application in all applied sciences. 
Seth’s transition theory does not acquire any assumptions as 
a yield condition, incompressibility condition, and thus poses 
and solves a more general problem from which cases pertain-
ing to the above assumptions can be worked out. This theory 
utilizes the concept of generalized strain measure and asymp-
totic solution at critical points or turning points of differential 
equations defining the deformed field, and has been success-
fully applied to a large number of problems /7-19/. 

FORMULATION OF THE PROBLEM AND IDENTIFI-
CATION OF TRANSITION POINTS 

We consider a thick-walled spherical shell, whose inter-
nal and external radii are a and b, respectively, is subjected 
to uniform internal pressure p and a temperature  applied 
to the internal surface of the shell. It is convenient to use 
spherical polar coordinates (r, , ), where  is the angle 
made by the radius vector with a fixed axis, and  is the 
angle measured around this axis. By virtue of the spherical 
symmetry  everywhere in the shell, due to spherical 
symmetry of the structure, the components of displacement 
in spherical coordinates (r, , ) are given by: 

 u = r(1 – ); v = 0; w = 0 (1) 

where u, v, w (displacement components);  is the position 
function. The generalized components of strain are given by 
Seth’s /17, 18/: 
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where ’ = d/dr.
Stress-strain relation: the constitutive equation for stress-
strain relations for the thermo-elastic isotropic material are 
given as /6/:

  (3) 1 2 , ( , 1ij ij ij ijT I e i j       

where: Tij are the stress components;  and  are Lame’s 
constants; I1 = ekk is the first strain invariant; ij is the Kron-
ecker’s delta,  = (3 + 2);  being the coefficient of 
thermal expansion; and  is the temperature. The tempera-
ture of any part of a spherical shell under elastic-plastic 
stress, by virtue of the first and second law of thermody-
namics, has to satisfy: 

 2 0    (4) 

By using Eq.(2) in Eq.(3), the stresses are obtained as: 
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Equation of equilibrium: the radial equilibrium of an 
element of the spherical shell requires: 
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where Trr and T are the radial and hoop stresses.  
Boundary conditions: the temperature field satisfying 
Laplace Eq.(4) with boundary condition: 
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where 0 is constant, given by /13/: 

 0 1
( )

a b

b a r

     
   (8) 

Critical points or turning points: using Eqs.(5) and (8) in 
Eq.(6), we get a nonlinear differential equation in  as: 
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where 00 0 / ( )ab b a   , c = 2/ + 2 and r’ = P (P 

is a function of  and  is a function of r). The transition 
points of  in Eq.(9) are: P = 0, P  –1 and P   . 

DETERMINATION OF STRESSES IN ELASTIC-PLAS-
TIC TRANSITION: 

In order to calculate elastic-plastic stresses, we define 
the transition function  by taking the principal stress /7-19/ 
at the transition point P  . The transition function  is 
given as: 
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where 0 0 / ( )a b a    . 
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Taking the logarithmic differentiation of Eq.(10) with 
respect to r and substituting the value of dP/d from Eq.(9) 
and taking the asymptotic value P  , after integration 
we get: 

 2
0

cA r   (11) 

where: A0 is a constant of integration. 
By using Eqs.(10) and (11), we have the transition value 

Trr as: 
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The value of material constant E in the transition range is 
given by Seth. 
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where Y is the yield stress in tension. 
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By using Eq.(7) in (14), we get 
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Substituting Eq.(15) in Eq.(9), we get: 
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Initial yielding: it is found that the value of T – Trr is 
maximum at the internal surface (i.e. r = a), which means 
that the yielding of the spherical shell will take place at the 
internal surface of the shell and Eq.(17) becomes: 
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The pressure required for initial yielding at the internal 
surface is given as: 
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Fully-plastic state: the stresses for fully plastic state are 
obtained by taking (c → 0) in Eqs.(15)-(17), and 
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Pressure required for the fully plastic state is given as: 
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The Eq.(21) shows that presence of the combined load of 
pressure and temperature gradient on the same surface of 
the spherical shell slows down the yield. Because in the 
presence of temperature gradient, the yield stress in com-
pression is found to be more than 2Y. The above result 
shows that Y* depends on both 0, and on the ratio of radii 
and yield stress in compression 2Y. Hence a thick-walled 
spherical shell requires more heat to yield than a thin-wall-
ed spherical shell, so long as the pressure remains constant 
in both the cases. 

Particular cases 

Case (i): spherical shell under internal pressure only: 
elastic-plastic transitional stresses for the spherical shell 
under internal pressure only are obtained by putting 0 = 0 
in Eqs.(15), (17) and (19), we get 
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For fully plastic state i.e. c → 0, we have 
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The pressure required for fully plastic state is 
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Case (ii): spherical shell under steady temperature: elas-
tic-plastic transitional stresses for the spherical shell under 
steady temperature only are obtained from Eqs.(15)-(17) by 
using boundary condition Trr = 0 at r = a, we get 
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For fully plastic state (i.e. c → 0), Eq.(27) becomes: 
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NUMERICAL DISCUSSION ON ELASTIC-PLASTIC 
STRESSES 

For calculating elastic-plastic stresses based on the 
above analysis, the following values have been taken: c = 
0.25; 0.50; 0.75, and B = 0/Y = 0; 1.5. Curves are drawn 
between stresses along the radii ratio R = r/b (see Fig. 1) for 
the spherical shell made of compressible materials. 

 

 
Figure 1. Distribution of elastic-plastic stresses in the spherical 

shell under pressure and steady state temperature, B = 0/Y.

It is observed from Fig. 1, that the value of circumfer-
ential stress is maximum at the external surface for com-
pressible material. Compressibility and the thermal gradient 
increase the value of circumferential stress at the outer 
surface of the spherical shell. 

In Fig. 2, the curves are drawn depicting the stresses and 
radii ratio R = r/b for the fully plastic state. It is observed 
that the circumferential stress has a maximum at the exter-
nal surface. The thermal effect increases the value of cir-
cumferential stresses at the outer surface. The spherical 
shell made of incompressible material requires a higher 
value of circumferential stresses as compared to compressi-
ble materials. 

 

 
Figure 2. Distribution of elastic-plastic stresses in the spherical 

shell for fully plastic state. 
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