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Abstract 

A Monte Carlo model of steady state light transport in 
contact lenses has been coded in ANSI Standard C. The 
Monte Carlo simulation offers a flexible, yet rigorous 
approach to photon transport in tissue which can be 
applied on the lenses as well. The method describes local 
rules of photon propagation that are expressed as probabil-
ity distributions. However, the method is statistical and as 
such relies on calculating the propagation of large number 
of photons. As a result, this method requires a large amount 
of computational time. This method is applied on the lenses 
and the obtained results are presented. The results confirm 
the possibility for the theoretical prediction of optical prop-
erties of materials. 

Ključne reči 
• Monte Karlo metoda 
• transport fotona 
• prostiranje 
• sočiva 
• optika 

Izvod 

Monte Karlo model stacionarnog stanja prenosa svetlos-
ti kodiran je u ANSI Standardnom C programu. Monte 
Karlo simulacije nude fleksibilan, ali rigorozan pristup 
transportu fenomena u tkivima koje takođe mogu biti 
primenjene na sočiva. Metod opisuje lokalna pravila preno-
šenja fotona koja su prikazana kao raspodela verovatnoća. 
Međutim, ova metoda je u prirodi statistička i kao takva 
oslanja se na izračunanje prostiranja velikog broja fotona. 
Kao rezultat, ova metoda zahteva veliku količinu računskog 
vremena. Ova metoda je primenjena na sočivima i prika-
zani su rezultati. Dobijeni rezultati potvrđuju mogućnost 
teorijskog predviđanja optičkih svojstava materijala. 

INTRODUCTION 

Monte Carlo simulation has been used to solve a variety 
of physical problems. So far, there is no well-established 
definition, but there is a tendency to adopt a definition 
proposed by Lux et al. /1/. A stochastic model is con-
structed and the expected value of a certain variable (or of a 
combination of several variables) is equivalent to the value 
of a physical quantity to be determined. This definition 
relates to all applications of the Monte Carlo method. 
Afterwards, the expected value is estimated by the average 
of multiple independent samples representing the random 
variable. For the construction of the series of independent 
samples, random numbers following the distribution of the 
variable to be estimated are used. 

Monte Carlo simulations offer a flexible, yet at the same 
time rigorous approach to photon transport in tissues and 
can score multiple physical quantities simultaneously. This 
method describes local rules of photon propagation that are 
expressed, in the simplest case, as probability distribution 
that describes the step size of photon movement between 
sites of photon-tissue interaction, and the angles of deflec-

tion in a photon’s trajectory when a scattering event occurs. 
The Monte Carlo method is statistical in nature and as such, 
relies on calculating the propagation of a large number of 
photons (e.g. 105) by the computer. Due to the reason 
mentioned above, a large amount of computational time is 
required, /1-3, 5/. 

Depending on the question being investigated, the preci-
sion needed and the spatial resolution desired, the number 
of required photons might be different /2, 3/. For example, 
to learn the total diffuse reflectance from a tissue of speci-
fied optical properties, about 3000 photons can yield to 
useful results. To map the spatial distribution of photons, 
(r,z), in cylindrical symmetry problems, at least 104 
photons are needed to yield to acceptable and reliable 
answers, and in more complex problems the photons 
number might exceed 105. Nevertheless, the flexibility of 
the Monte Carlo method makes a powerful tool. 

These simulations are based on macroscopic optical 
properties that are assumed to extend uniformly over small 
units of volume. Mean free paths between photon-tissue 
interaction sites typically range from 10-1000 m, with 
100 m as typical value in the visible spectrum /1-3, 5, 13/. 
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The photons are treated as particles which means that polar-
ization and wave phenomenon are neglected. The scattering 
can be isotropic although the current version does not 
consider anisotropic media. 

Monte Carlo simulations may be used for diagnostic as 
well as for therapeutic applications of lasers and other 
optical sources in medicine /12, 13/. For example, the 
diffuse reflectance simulated by these simulations can be 
used to deduce optical properties of tissues which may be 
ultimately used to differentiate cancerous tissue and the 
normal one. 

In the following sections the problem is described, the 
strategy of photon tracing into the lens and physical quanti-
ties scoring is given as well. These sections are followed by 
results and conclusion sections. 

THE PROBLEM AND COORDINATE SYSTEMS 

The method used in this paper describes the transport of 
an infinitely narrowed photon light beam, perpendicularly 
introduced on a lens. The wide lens is described by the 
following parameters: the thickness d (cm), the refractive 
index n, the absorption coefficient a (cm–1), the scattering  

coefficient s (cm-1), and the anisotropy factor g. Although 
the real lens can never be infinitely wide, it can be so 
treated on the condition that it is much wider than the 
spatial extent of the photon distribution. 

The absorption coefficient is defined as probability of 
photon absorption per unit infinitesimal path-length, and 
the scattering coefficient is defined as probability of photon 
scattering per unit of infinitesimal path-length. Sometimes 
the total interaction coefficient t is used and it is the sum 
of two before mentioned coefficients /12, 13/. As the other 
coefficients, it represents the probability of photon interac-
tion per infinitesimal path-length of the lens. The anisot-
ropy coefficient is the average of the cosine value of the 
deflection angle. 

Three different coordinate systems are used in the Monte 
Carlo simulation. A Cartesian coordinate system is used to 
trace photon movements; a cylindrical coordinate system is 
used to score internal photon absorption as a function of r 
and z coordinates; a spherical coordinate system is used for 
sampling the propagation direction change of a photon 
packet. In Fig. 1 a basic flowchart of the Monte Carlo 
method is given. 

 

Figure 1. The Monte Carlo simulation flowchart. 
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SIMULATING PHOTON PROPAGATION 

In this section the rules of photon propagation in Monte 
Carlo simulations are presented. The flowchart presented in 
Fig. 1 shows basic flow of the photon propagation. Many 
boxes in the flowchart are a direct implementation of the 
following discussions and they have been implemented in 
ANSI Standard C.  

Sampling random variables 

For random variable , there is a probability density 
function p() that defines the distribution of  over the 
interval (a,b). The chosen variable may be the angle of 
deflection that a scattered photon may experience due to the 
scattering event or the variable step size that photon will 
take between interactions. For the photon propagation 
simulation we can choose a value for  repeatedly and 
randomly based on a number generator provided by com-
puter. This random variable is created by computer, , 
which is uniformly distributed over the interval (0,1). Non-
uniform probability density function p() can be sampled 
by solving the following equation, /13/: 

 ( )a P d     (1) 

Representation of a photon packet 

The location of a photon packet described by coordinates 
(x,y,z) is represented by structure members x, y, z. The 
structure members ux, uy, uz are representing the travelling 
directions described by directional cosines (x, y, z). In 
order to improve efficiency of the Monte Carlo method, a 
simple variance reduction technique, implicit photon 
capture, is used. This technique allows one to equivalently 
propagate many photons as a packet along a particular 
pathway simultaneously. A weight, W, is assigned to each 
photon packet initially. The current weight of the photon 
packet is denoted by the structure member w, /7, 8, 11/. 

The member dead, initialized to be 0 when the photon 
packet is launched, represents the status of a photon packet. 
If the photon packet has exited the lens or has not survived 
a Russian roulette (discussed later) when its weight is 
below the threshold weight, the member dead is set to 1. 
This is used to signal the program to stop tracing the current 
photon packet. 

The step size in dimensionless units, s, is defined as the 
integration of the interaction coefficient t over the photon 
pathway. This quantity is known as ‘optical distance’, and 
in homogeneous medium the photon path length is multi-
plied by the interaction coefficient. The number of scatter-
ings experienced by the photon packet is stored in the 
member scatters. The member scatters is used to identify 
the unscattered reflectance or transmittance, or the first 
interaction inside the lens when photon weight is scored. 

A launching of a photon 

The photon position is initialized to (0, 0, 0), and the 
directional cosines are set to (0, 0, 1). The weight is initial-
ized to 1 as well as several other members. When the 
photon is launched, if there is mismatch between ambient 
medium (n1) and the lens (n2), then the specular reflectance, 
Rsp, will occur, /9-12/. 
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If the lens is between two clear mediums then multiple 
reflections and transmissions on the two boundaries are 
considered, and specular reflectance is calculated by: 

 
2

1 2
1

1 2

(1 )

1sp
r r

R r
r r


 


 (3) 

where: r1 and r2 are the Fresnel reflectances on the two 
boundaries 
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The photon weight, initialized to 1, is decreased by Rsp 
for the photon packet to enter inside the lens. 

 1 spW R   (6) 

Equation (3) is used when the system is relatively 
simple, e.g. system of ambient air and homogeneous lens. 
Otherwise, the Eq.(4) is used. 

Photon’s step size 

The step size of the photon packet is calculated based on 
a sampling of the probability distribution for the photon‘s 
free path s (0 ≤ s ≤ +∞). According to the definition of 
interaction coefficient t, the probability of photon-lens 
interaction on the interval (s’, s’+ ds’) is: 
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where: P gives the probability for the condition inside the 
brackets to hold. After integration of Eq.(7) over interval 
(0, s1), exponential distribution is obtained. 

 1
1( ) t sP s s e    (8) 

The probability density function of free path s is: 

 11
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This equation can be substituted in Eq.(1) which yields to: 

 1
ln(1 )
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Or due to the symmetry: 

 1
ln( )

t

s





  (11) 

This equation is used to sample step size of a photon 
movement in an infinite or semi-infinite medium. The 
photon packet which has travelled through –ln(ε) will expe-
rience a photon-lens interaction. If the interaction occurs, 
the whole photon packet experience interaction by absorp-
tion or scattering. Due to calculation of the logarithmic 
function, especially for the large number of photons, this 
method is time consuming. In the literature there are several 
methods that can be used to alleviate this occurrence. 
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Photon moving 

When sub-step is determined, si, the photon is moved in 
the lens. The newest location is updated in the following 
manner: 

 
new old x i

new old y i

new old z i

x x s

y y

z z s

s






 

 
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 (12) 

Photon absorption 

At the time when an interaction site is reached by the 
photon, a fraction of photon weight (W) is absorbed. This 
weight will be deposited in the local grid element and can 
be calculated as: 

 a

t

W W



 
  

 


W

 (13) 

If the photon packet has not been scattered, the photon 
weight W is scored into the array for the first photon-lens 
interactions. Otherwise this weight is scored into A(r,z) at 
the local grid element. 

The photon weight has to be updated by: 

  (14) new oldW W  

Photon scattering 

By the time when the photon packet has reached the 
interaction site and its weight decreased, the photon packet 
with updated weight is ready to be scattered. To find the 
direction into which the photon is scattered into, two angles 
have to be known: the azimuthal angle and the deflection 
angle. The azimuthal angle, ψ(0,2π) is not dependent on the 
lens’ properties and it can be calculated as: 

 cos(2 )   (15) 

The deflection angle, θ(0,π), however, depends on the 
optical properties of the lenses, especially the anisotropy 
determined by the anisotropy factor, g(-1,1). For lenses this 
factor is usually approx. 0.9, for light in near infrared range. 
This means that scattering approaches Mie-scattering which 
is mainly forward directed. If g = 0 the tissue anisotropic 
properties and probability of the scattering angle is 
uniformly distributed between 0 and π. If g is negative then 
mostly backward scattering occurs. The probability density 
function of the deflection angle can be described by the 
Henyey-Greenstein phase equation, originally intended for 
galactic light scattering /5, 6/. The Henyey-Greenstein 
equation gives the following: 
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where: g equals cosθ is the anisotropy factor and has a 
value between –1 and 1. Values of g range between 0.3 and 
0.98, and quite often g is 0.9 in the visible spectrum. By 
applying Eq.(1), cosθ can be expressed as a function of a 
random number . 

The probability function p(θ) is depicted on Fig. 2. The 
probability is given as a function of deflection angle for 
different anisotropy factor. On Fig. 2, a straight horizontal 

line indicates isotropic scattering (g = 0). As the value of 
anisotropy factor rises to 1, the curve is being narrowed 
with the higher maximal value. A value for g near 1 indi-
cates forward-directed scattering. It was experimentally 
determined by Jacques et al., that the Hanyey-Greenstein 
function describes single scattering in tissue very well. 

 
Figure 2. The Hanyey-Greenstein function for different values of 

anisotropy factor, /2-4, 6/. 

If g ≠ 0 then: 
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or if g = 0 then 
 cos 2 1    (18) 

The azimuthal angle, which is uniformly distributed over 
the interval 0 to 2π, is calculated by: 
 2   (19) 

The newest direction can be calculated with the deflec-
tion and azimuthal angles via: 
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 (20) 

When the photon packet is sufficiently close to the z-axis 
(e.g. |z| > 0.99999), the next set of the equations should be 
used, /13, 14/, 
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 (21) 

The function ‘sign’ returns 1 when z is positive. Other-
wise returns –1 if the value is negative. 

Reflection or transmission at boundary 

During a step, the photon packet may hit a boundary of 
the lens, which is between the lens and ambient medium. 
For example, the photon packet may attempt to escape the 
lens at the interface. If this is the case, it may either escape 
as observed reflectance or be internally reflected by the 
boundary. There are several methods of dealing with the 
photon packet hitting the boundary problem. 
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Step 1: Computing the distance between current photon 
location and boundary of the current layer, depending on z: 

a.   If   z <0:  0( ) /bd z z z   (22a) 

b.   If   z = 0:  (22b) bd  

c.   If   z > 0: 1( ) /bd z z z   (22c) 

where: z0 and z1 are the z coordinates of the upper and lower 
boundaries of the current layer. 

Step 2: Decision whether the step size s is greater than 
db. This is done by using equation: 

 b td s   (23) 

If Eq.(23) holds, the photon packet will hit a boundary, 
and we move the photon packet to the boundary and update 
s. If Eq.(23) does not hold, the step will fit in the current 
layer and we move the photon packet to the interaction site 
where it must experience absorption and scattering. 

Step 3: The probability of a photon packet being inter-
nally reflected is calculated if it hits the boundary. This 
probability depends on angle of incidence, i, computed by: 

 1cos ( )i z   (24) 

Snell’s law indicates the relationship between the angle 
of incidence (i), the angle of transmission (t), and the 
refractive indices of the media that the photon is incident 
from (ni), and transmitted to (nt): 

 sin sini i tn n t   (25) 

If ni > nt, it means that i is greater than the critical 
angle, the internal reflectance R(i) is set to 1. Otherwise, 
R(i) is computed by Fresnel’s formulas: 
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Because of the assumption made earlier, that light does 
not have particular polarization, Eq.(26) represents an aver-
age reflectance for two orthogonal polarization directions. 

Step 4: Determination whether the photon is internally 
reflected or transmitted, is done by generating a random 
number , and comparing the random number with the 
internal reflectance. 

If  ≤ R(i) then the photon is internally reflected. 
If  > R(i) then the photon transmits. 
If the photon is internally reflected, the photon packet 

stays on the boundary and its directional cosines must be 
updated by reversing the z component (x, y, –z). Then, 
go to the Step 1. 

If the photon packet transmits across the boundary, it 
might enter another layer of the lens or ambient medium. If 
the photon packet is transmitted to the next layer of the 
lens, it must continue propagation with an updated direction 
computed by: 
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 (28) 

Afterwards, go back to Step 1 for the next sub-step of 
propagation. 

The photon weight is scored into diffuse reflectance or 
transmittance when photon packet escapes the lens. If the 
photon packet has not been scattered, the photon weight is 
scored into unscattered reflectance or transmittance depend-
ing on where the photon packet escapes. If the photon 
packet has been scattered at least once, the diffusive reflec-
tance, Rd(r,t), or diffuse transmittance, Td(r,t), at the par-
ticular grid element (r,t) must be updated by the amount of 
escaped photon weight, W. If z = 0: 

 ( , ) ( , )d t d tR r R r W    (29) 

If z = d, the bottom of the lens: 

 ( , ) ( , )d t d tT r T r W    (30) 

Due to the fact that the photon has escaped, the tracing 
of the photon is terminated and a new photon may be 
launched into the lens and traced afterwards. 

Photon termination 

After a photon being launched, it can be terminated natu-
rally by reflection transmission out of the lens. A photon is 
terminated if it escapes the lens or if the photon weight 
decreases bellow a defined threshold value. If the photon 
weight is bellow this threshold weight (e.g. Wth = 0.0001), 
the current photon gets a further chance in m (e.g. m = 10) 
for surviving with a weight of mW. The photon is termi-
nated if it does not survive the so-called Russian roulette: 

If  ≤ 1/m, then 
 W mW  (31) 

else 
 0  (32) W 

This method conserves energy and yet terminates 
photons in unbiased manner. 

SCORED PHYSICAL QUANTITIES 

i  







 (27) 

During the Monte Carlo simulation the photon reflec-
tance, transmittance and absorption are being recorded. The 
last cells in the r and z directions require special attention 
due to propagation beyond the lens. In this case, the last 
cells in r and z directions do not indicate the real value at 
corresponding locations. However, the angle  is always 
within the bound, 0 ≤  ≤ /2, hence in this manner a prob-
lem in the scoring of angular distributions of diffuse reflec-
tance and transmittance is precluded. 

Reflectance and transmittance 

After launching a photon, the specular reflectance is cal-
culated, and the photon weight is transmitted to the lens. 
During the simulation, some photons may exit the media 
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Ten Monte Carlo simulations of 104 photon packets each 
are completed and the total diffusive reflectance and trans-
mittance are averaged and calculated with standard devia-
tion. Results are given bellow: 

and their weight is scored into diffusive reflectance or 
diffusive transmittance depending on location where the 
photon exits. The photon packets are internally represented 
by two arrays: Rd–r[ir,i] and Td–r[ir,i] where ir and i are 
indices for r and  which are in the range: 0 ≤ ir ≤ Nr – 1, 
0 ≤ i ≤ N – 1. The coordinates are optimized to minimize 
error: 

 0.04435 0.00049dR    (42) 

 0.94275 0.00083dT    (43) 
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 (34) 

Results indicate that about 94% of proton packets are 
transmitted while 4% are reflected. The rest of about 2% 
are absorbed by the lens. 

The obtained results confirm the possibility for the theo-
retical prediction of materials optical properties. Optical 
characteristics of the material are: absorbance, reflectance 
and transmittance. 

The values for r are given in (cm) and for  in (rad). 
After tracing multiple photon packets N, the raw data 

Rd–r[ir,i] and Td–r[ir,i] provide the total photon weight in 
each grid element. The total photon weight in grid elements 
in each direction is calculated as follows: 

 
1

0
[ ] [ , ]

N

d r r d r r
i

R i R i i



 



 


   (35) 

Therefore, the advantage of the Monte Carlo simulation 
is that any parameter, such as the path, absorption position 
and many others, can be logged. Also, there are not any 
limitations in lens geometry or homogeneity. The serious 
drawback is the substantial computational time needed in 
order to have reliable results. Contrary to this, Monte Carlo 
is a powerful tool. 
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