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Abstract 

Seth’s transition theory is applied to the problem of ther-
mal creep strain rates and displacement in a thick-walled 
spherical shell by finite deformation. Neither the yield crite-
rion nor the associated flow rule are assumed here. The 
results obtained here are applicable to compressible mate-
rials. If the additional condition of incompressibility is 
imposed, then the expression for stresses corresponds to 
those arising from Tresca yield condition. It has been 
observed that the circumferential stresses have maximum 
value at the external surface of thick wall spherical shell 
made of compressible materials as compared to the incom-
pressible material applied through temperature for meas-
ure n = 0.142. Strain rates have a maximum value at the 
external surface for measure n = 0.142, but the result is 
reversed in the case of measure n = 0.2 and 0.33. 

Ključne reči 
• brzina deformacije 
• pomeranje 
• sferna ljuska 
• naponi 

Izvod 

Teorija prelaznog stanja Seta je primenjena sa konačnim 
deformacijama na problem brzine puzanja i pomeranja kod 
debelozidne sferne ljuske. Ovde se ne pretpostavlja ni krite-
rijum puzanja a ni odgovarajući zakon protoka. Dobijeni 
rezultati se mogu primeniti na stišljive materijale. Ako bi se 
zadao dodatni uslov nestišljivosti, onda su izrazi za napone  
isti kao pri izvođenju primenom uslova tečenja Treska. 
Uočava se da naponi na obimskom pravcu imaju najveću 
vrednost na spoljnoj površini debelozidne sferne ljuske 
sačinjene od stišljivog materijala u poređenju sa nestiš-
ljivim materijalom pri izvođenjima temperature i pri mernoj 
veličini n = 0,142. Brzine deformacije imaju najveće vred-
nosti na spoljnoj površini kod vrednosti merne veličine n = 
0,142, ali se rezultat menja u suprotnom smeru kod mernih 
veličina n = 0,2 i 0,33. 

INTRODUCTION 

The main topic of this paper is a thick-walled spherical 
shell of rubber, copper, or brass-like material. Therefore, 
studies and investigations on different axisymmetric shells 
are carefully reviewed and their keynotes are mentioned here. 
Shells are common structural elements in many engineering 
applications, including pressure vessels, submarine hulls, 
ship hulls, wings and fuselages of airplanes, missiles, auto-
mobile tires, pipes, exteriors of rockets, concrete roofs, chim-
neys, cooling towers, liquid storage tanks, and many other 
structures. They are also found in nature in the form of eggs, 
leaves, inner ear, bladder, blood vessels, skulls, and geologi-
cal formations. 

Rotating shell structures have many engineering applica-
tions like aviation, rocketry, missiles, electric motors and lo-
comotive engines. Engineers have found its increasing appli-
cation in aerospace, chemical, civil and mechanical industries 
such as in high-speed centrifugal separators, gas turbines for 
high-power aircraft engines, spinning satellite structures, cer-

tain rotor systems and rotating magnetic shields, /7/. To inc-
rease the strength of shells or shafts, it is therefore very im-
portant for engineers to study the behaviour of transition in 
rotating shells. A shell is a curved surface in which the thick-
ness is much smaller compared to the other dimensions. Geo-
metrical properties of shells, i.e. the single or double curva-
ture give rise to a tremendous advantage of these light-weight 
structures, /27/. Analysis and design of these structures are, 
therefore, continuously of interest to the scientific and engi-
neering community. The accurate and conservative assess-
ments of the maximal load carried by the structure, as well as 
the equilibrium path in both elastic and plastic range are of 
paramount importance. Solutions for thin spherical shells can 
be found in most of the standard elasticity and plasticity 
textbooks /5, 9/. Elastic behaviour of shells has been very 
closely investigated, mostly by means of finite element 
method. Many authors like R. Eberlein, Wriggers, Civalek, 
Gürses have done elastic-plastic calculations in shells by 
using various theoretical and numerical approaches based on 
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finite element method, shear deformation theory, discrete 
convolution technique, /5-8/. This paper is based on the non-
linear transition theory of elastic-plastic shells. Here, the 
elastic-plastic problem of rotating spherical shells based on 
the different degree of compressibility has been solved by 
using the concept of generalized strain measures and tran-
sition theory. The distribution of stresses and yielding in an 
elastic-plastic rotating shell has been calculated by using the 
concept of generalized strain measures and generalized 
Hooke’s law at critical points of the non-linear differential 
equation defining the equilibrium stage. The transition theory 
of elastic-plastic shells does not implement ad-hoc assump-
tions as incompressibility, yield conditions, those of Tresca, 
Von Mises, and creep-strain laws as those of Norton, Od-
quist, /8/. This theory has been used to solve various elastic-
plastic transition problems, /3, 4, 12/. The accurate calcula-
tion of radial and circumferential stresses is essential for effi-
cient design and long life of mechanical structures. In this 
paper, elastic-plastic stresses are determined by using the 
asymptotic solution at critical points and required angular 
speed to start initial yielding in the shell without using any 
semi-empirical yield condition and other certain laws. We 
analyse the non-linear transition problem of a thin rotating 
spherical shell by using generalized strain measures and 
Seth’s transition theory for different values of compressibil-
ity. The effect of displacement and strain rates has been 
discussed numerically and is depicted graphically. 

GOVERNING EQUATIONS OF THE PROBLEM 

A thick-walled spherical shell, whose internal and exter-
nal radii are a and b respectively, is subjected to uniform 
internal pressure p of gradually increasing magnitude and a 
temperature  applied to the internal surface of the shell. It 
is convenient to use spherical polar coordinates (r, , ), 
where  is the angle made by the radius vector with a fixed 
axis, and  is the angle measured around this axis By virtue 
of the spherical symmetry  =  everywhere in the shell, 
due to spherical symmetry of the structure, the components 
of displacement in spherical coordinates (r, , ) are given 
by /13/: 

 (1 ),  0,  u r v w dz     (1) 

where: u, v, w are displacement components;  is a position 

function, depending on r = 2 2 2x y z   only. Generalized 

components of strain are given by Seth, /13/: 
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where: ′ = d/dr.
Stress-strain relation: The T stress-strain relations for 
thermoelastic isotropic material are, /7/: 

 1ij ij ij ij       ,   (i, j = 1, 2, 3) (3) 

where: Tij are stress components;  and  are Lame’s 
constants; I1 = ekk is the first strain invariant; ij is the 
Kronecker delta;  = (3 + 2);  being the coefficient of 

thermal expansion, and  is the temperature. Further,  has 
to satisfy: 
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Using Eq.(2) in Eq.(3), the stresses are obtained as: 
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Equation of equilibrium: The radial equilibrium of an 
element of the rotating disk requires: 
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where Trr and T are the radial and hoop stresses. For 
sufficiently small values of pressure, the deformation of the 
shell is purely elastic. If the radial displacement is denoted 
by u, the stress-strain relations for the elastic shell may be 
written as: 
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Boundary conditions: The temperature satisfying Laplace 
Eq.(4) with boundary condition: 

  = 0  and  Trr = –p;  u = 0  at  r = a 

  = 0  and  Trr = 0  at  r = b (8)
where 0 is constant, given by /7/: 
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Critical points or turning points: Using Eqs.(5) and (8) in 
Eq.(6) we get a non-linear differential equation in  as: 
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where: 0 0 / ( )ab b a   ; C = 2/ + 2  and  r′ = P 

(P is function of  and  is function of r).
Transition points of  in Eq.(9) are P → –1 and P → ±∞. 

SOLUTION OF THE PROBLEM 

To find thermal creep stresses and strain rates, the tran-
sition function is taken through principal stress difference 
/11, 14, 17-26/ at the transition point P → –1. We define 
the transition function   as: 

  2
1 ( 1) (1 )

n
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where  is a function of r only and  is the dimension. 
Taking the logarithm and differentiation of Eq.(10) with 

respect to r and substituting the value of dP/d from Eq.(9) 
and taking asymptotic value P → –1, after integration we get: 
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of integration, that can be determined by boundary condi-
tion. The asymptotic value of  as P → –1 is D/r, D being a 
constant, therefore from Eq. (11), we have
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Substituting Eq.(12) into Eq.(6), we get: 
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where: A1 is a constant of integration that can be determined 
by boundary condition. Using boundary condition Eq.(8) in 
Eq.(13), we get A1 = [2A0  r–2C–1{Dnr–n}3–2C exp(F2)dr]r = b. 

Substituting the constants A1 in Eq.(13), we get: 
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Substituting the value of the constants A0 and A1 in 
Eqs.(12), (13) and (7), we get: 
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mal expansion. Eqs. (14)-(16) define creep stresses and dis-
placement for a thick spherical shell under uniform pressu-
re. We introduce now the following non-dimensional com-
ponents: R = r/b, R0 = a/b, r = Trr/p,  = T/p, D = 1, ū = 
u/p, and 0 = 1, to get Eqs. (14)-(26) in non-dimensional 
form: 
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ESTIMATION OF CREEP PARAMETERS 

When creep sets in, the strains should be replaced by 
strain rates and the stress-strain relations Eq.(3) become: 
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where ėij is the strain rate tensor with respect to flow 
parameter t. Differentiating Eq.(4) with respect to time, we 
get: 

 1ne      (21) 

For SWAINGER measure (i.e. n = 1), Eq.(21) becomes: 

     (22) 

where   is the SWAINGER strain measure. From Eq. 

(10) the transition value  is given by: 
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Using Eqs.(21)-(23) in Eq.(24), we get: 

  
1

1
( )(1 ) [nrr r rn   ]             

  
1

1
( )(1 ) [nr rn   ]             (24) 

    
1

1
( )(1 ) ( )nzz r rn                 

where: rr ,   and zz  are strain rate tensor. These are 

the constitutive equations used by Odquist /8/ for finding 
the creep stresses and strain rates provided we put n = 1/N. 
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Curves are produced for strain rates along the radii ratio 
R = r/b (see Fig. 3) for thick-walled spherical shell of com-
pressible material (i.e. saturated clay or copper) as well as 
incompressible material (i.e. rubber) with temperature 1 = 
0, 0.125 and measure n = 1/7, 1/5, 1/3 (i.e. N = 7, 5, 3). It 
has been seen (Fig. 3) that the thick-walled spherical shell 
of compressible material has a maximum value of strain at 
the external surface as compared to the shell of incompress-
ible material for measure n = 0.142 at 1 = 0.125. But a 
reversed result is obtained for measure n = 0.2 and 0.33. 

NUMERICAL RESULTS DISCUSSION 

For calculating strain rates, stresses and displacement 
based on the above analysis, the following values have been 
taken  = 0.5 (incompressible material, i.e. rubber),  = 
0.4285 (compressible material, i.e. saturated clay), and  = 
0.333 (compressible materials, i.e. copper), n = 1/3, 1/5, 1/7 
(i.e N = 3, 5, 7),  = 5.0  10–5 °F−1 (for methyl methacrylate, 
/8/, 1 = 0, 0.125 and D = 1. In classical theory measure, N 
equals to 1/n. 

Definite integrals in Eqs.(17)-(18) have been solved by 
using Simpson’s rule. Curves are produced between stresses 
along the radii ratio R = r/b (see Fig. 2(a)) for thick-walled 
spherical shell made of compressible as well as incomepres-
sible material with temperature 1 = 0, 0.125 and measure 
n = 0.142, 0.2, and 0.333. It is also observed from Fig. 2 that 
the circumferential stresses have maximum value at the 
external surface of thick-walled spherical shell made of com-
pressible material as compared to the incompressible material 
applied through temperature 1 = 0.125 for measure n = 
0.142. But the result is reversed in measure n = 0.2 and 0.33. 
For measure n = 0.2 and 0.33, it has been seen that circum-
ferential stresses are maximum at the internal surface of the 
compressible material, with the introduction of the thermal 
effect, decrease the values of stresses at the internal surface. 

CONCLUSION 

It has been observed that circumferential stresses have 
maximum value at the external surface of a thick-walled 
spherical shell of compressible material as compared to an 
incompressible material applied through temperature for 
measure n = 0.142. But a reverse result is reached in meas-
ure n = 0.2 and 0.33. Strain rates have a maximum value at 
the external surface for measure n = 0.142, but a reversed 
result is received in the case of measure n = 0.2 and 0.33. 

     

Figure 1. Stress distribution in a thick-walled spherical shell along radius R = r/b. 



Mathematical method to determine thermal strain rates and  Matematička metoda za određivanje brzine toplotne deformacije i …
 

                     

n = 0.33 

 

Figure 2. Strain rates in a thick-walled spherical shell along radius R = r/b for measure n = 0.142, 0.2 and 0.333. 
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