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Abstract 

Creep stresses for a transversely isotropic thick-walled 
cylinder subjected to internal pressure under steady state 
temperature have been obtained by using Seth’s transition 
theory. Results obtained have been discussed numerically 
and depicted graphically. It is seen that the rotating circu-
lar cylinder under internal pressure of transversely iso-
tropic material is on the safer side of design as compared to 
the rotating circular cylinder under internal pressure of 
isotropic material. 

Ključne reči 
• elastičnost 
• plastičnost 
• temperatura 
• pritisak 
• cilindar 
• poprečni 
• izotropan 

Izvod 

Naponi puzanja kod transverzalnog izotropnog debelo-
zidog cilindra opterećenog unutrašnjim pritiskom i stacio-
narnim uticajem temperature su određeni primenom Setove 
teorije prelaznog stanja. Dobijeni rezultati su diskutovani 
sa numeričkog aspekta i predstavljeni grafički. Uočava se 
da je rotirajući kružni cilindar pod dejstvom unutrašnjeg 
pritiska na poprečni izotropni materijal, sigurniji sa aspek-
ta konstruisanja u poređenju sa rotirajućim kružnim diskom 
pod dejstvom unutrašnjeg pritiska od izotropnog materijala. 

INTRODUCTION 

Thick-walled circular cylinders are used commonly 
either as pressure vessels intended for storage of industrial 
gases or for a media transport of high pressurised fluids. 
Many authors /2, 3, 4/ have discussed creep of thick-walled 
cylinder under internal pressure. Rimrott analysed the 
above problem by considering large strains. These authors 
made the following assumptions: 
1. The volume of the material remains constant, or 

 0r zz       . 

2. The ratios of principal shear strain rates to the principle 
shear stresses are equal, i.e. 

 rr zzrr zz

rr rr zz zz
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3. The axial strain rate is zero, i.e. 0z  . 

4. There is a significant stress–rate of true strain relation-
ship which coincides with the true stress–creep rate rela-
tionship in simple tension, for example Norton’s Law. 

5. The creep deformation is infinitesimally small. 
Seth’s transition /1/ does not require any assumptions 

stated above and thus poses and solves a more general 
problem from which cases pertaining to these assumptions 
can be worked out. It utilises the concept of generalised 
strain measure and the asymptotic solution at turning points 
or transition points of the governing equation defining the 

deformed field. It has successfully been applied to a 
number of creep problems. 

Seth, /19/, has defined the generalized principal strain 
measure as: 
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where ‘n’ is the measure and 
A

iie are Almansi finite strain 

components. For n = –2, –1, 0, 1, 2 it gives Cauchy, Green 
Hencky, Swainger and Almansi measures, respectively. 

In this paper, we calculated creep stresses in a trans-
versely isotropic thick-walled cylinder under internal pres-
sure under steady-state temperature by using Seth’s transi-
tion theory. 

GOVERNING EQUATIONS 

Consider a thick-walled circular cylinder of transversely 
isotropic material of internal and external radii a and b, 
respectively, under the combined effect of pressure p and 
temperature T0 applied at the internal surface. 

The displacement component in cylindrical polar co-or-
dinates are given as: 

 u = r(1 – );  v = 0  and  w = dz (2) 

where  is a function of 2 2r x y  only, and d is a 

constant. 
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The finite strain components are given by Seth /19/ as: 
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where ’ = d/dr and the meaning of superscripts ‘A’ is 
Almansi. 

By substituting Eq.(3) into Eq.(1), the generalized com-
ponents of strain are: 
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The stress-strain relations for transversely isotropic 
material are given by /10/: 
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where 1 = C111 + 2C122, 2 = C121 + (C22 + C33)2, Cij 
are elastic parameters; T – temperature change; 1 – coeffi-
cient of linear thermal expansion along the axis of symme-
try; and 2 – corresponding quantities orthogonal to axis of 
symmetry. 

By substituting Eqs.(4) in Eqs.(5), one gets: 
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Equations of equilibrium are all satisfied except: 

 ( ) 0rr
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T Td
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dr r


   (7) 

The temperature field satisfying the Fourier heat equa-
tion 2T = 0 and T = T0 at r = a, T = 0 at r = b, where T0 is a 
constant, is given by /9/: 

 0 log
log

T r
T

a b
b

  (8)  

By substituting Eqs.(6) and (8) into Eq.(7), one gets a 
non-linear differential equation with respect to  as: 
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where 0 0 / log( / )T T a b  and r′ =P (P is function of  
and  is function of r). 

The transitional points of  in Eq.(9) are P → –1 and 
P → ± ∞. Boundary conditions are given by: 
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The resultant force normally applied to the ends of the 
cylinder is: 

  (11) 22
b

zz
a

rT dr a p 

SOLUTION THROUGH PRINCIPAL STRESS DIFFER-
ENCE 

It has been shown that the transition function through the 
stress difference /5-18/ at the transition point P → –1 gives 
the creep stresses. For finding creep stresses at the transi-
tion point P → –1, we define the transition function R as: 
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and by taking the logarithmic differentiation of Eq.(12) 
with respect to r, one gets: 
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By substituting the value of dP/d from Eq.(9) into 
Eq.(13), one gets: 

66 0 2 1
6

66 1 1 0 66 1

66
1 1 0 2 1

1
(log ) 2 1 (1 ) ( )

2 (1 ) 2 (1 )

2
1 (1 ) ( ) log

n n

n n n

n n

d
R C P P T

dr rR

C P P C T C P C

C r
C P C T

n b

 

  

  

         

    

        



   

 (14) 

where C1 = 2C66/C11. 
Asymptotic value of Eq.(14) as P → –1 is: 
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(15) 

where asymptotic value of   as P → 1 is D/r, D being a 
constant. 
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By integrating Eq.(15) with respect to r, one gets: 
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where A1 is a constant of integration which can be deter-
mined by boundary condition and C1 = 2C66/C11, and 
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By substituting Eq.(16) into Eq.(12), one gets: 
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By substituting Eq.(17) into Eq.(7), one gets: 

  (18) 1 IrrT A  

where I is the integral: 
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and where A2 is a constant of integration that can be deter-
mined by the boundary condition. 

By substituting Eq.(17) into Eq.(18), one gets: 
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Constants A1 and A2 are obtained by using boundary 
conditions given by Eq.(10) into Eq.(18), thus one gets: 
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By substituting values of A1 and A2 from Eqs.(18) and 
(19), one gets: 
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The axial stress is obtained from Eq.(6) as: 

 

 

2
13 33 11 66 13

11 66 11 66

13 1 2 2 11 66
11 66

( )

2( )

( ) 2 ( )
2( )

zz rr zz
C C C C C

T T T
C C C C

T
C C C

C C



  

  
e    

   

   



 (22) 

By applying condition Eq.(11) into Eq.(22), the axial 
strain is given by: 

 2
11 66 1311 66

2 22
11 6633 11 66 13

2
2 2

0 13 11 66 2 2
1 1

( )

( )( )( )

2 log( / ) 1
1 ( )

2

zz

a p C C CC C
e

b a C CC C C C

a a b
C C C

b a

 


 

  
 
      

             
        

 (23)  

Eqs.(20)–(22) give thermal creep stresses for a thick-
walled cylinder under internal pressure. Now we introduce 
the following non-dimensional quantities: 
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Creep stresses, Eqs.(20)–(22), in non-dimensional form 
become: 
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and 0 = 1 0T .
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Case with negligible temperature 

Creep stresses for thick-walled cylinder without thermal 
effect are obtained by placing 0T  = 0 into Eqs.(24)–(26): 
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Isotropic case 

For isotropic materials, the material constants reduce to 
two only, i.e., C11 = C22 = C33, C12 = C21 = C13 = C31 = C23 = 
C32 = (C11 – 2C66) and 1 = 2 = 3 = . In term of con-
stants  and , these can be written as: C12 = , C66 = 
½(C11 – C12) ≡  and C11 =  + 2.

For isotropic materials Eqs.(24–26) become: 

 

1
2 ( 1) 1

2

1
2 ( 1) 1

2

exp

exp
o

n C n

R
r

n C n

R

R f

R f



   

   








dR

dR

 (30) 

 

0

2 ( 1)
2

1
2 ( 1) 1

2

exp

exp

n C n

r
n C n

R

R

R f
 

  

   


 



f

dR

 (31) 

 
2
0

2
0

1
( )

2 (2 )(1 )
z r

CRC

C C R
         

 (32) 

where 2 0( ) (3 2
n

nD
)f T R

b
    

 
C . 

Case with negligible temperature (isotropic case) 

Creep stresses for thick-walled cylinder without thermal 
effect are obtained by placing 0T  = 0 in Eqs.(30–32): 
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Incompressible material 

Creep stresses for thick-walled cylinder under internal 
pressure for incompressible material are obtained from 
Eqs.(33–35): 
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These equations are the same as obtained by Gupta, /11/. 

Strain rates 

The stress-strain rate relationship can be given as: 
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where , rre e

2
13C

,  is the strain rate tensor with respect to 

flow parameter t and  = Trr + T + Tzz, H = 4C66(A – C66), 

A = C11 – ( /C33). 

zze

Differentiating Eq.(4) with respect to time t, one gets: 
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For Swainger measure (n = 1), we have from Eq.(40): 
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The transition value of Eq.(12) as P → –1 gives: 
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Using Eqs.(40), (41) and (42) in Eq.(39), one gets: 
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(i.e. N = 1, 3) while for measure n = 1/7 (i.e. N = 7), the 
circumferential stress is maximum at the external surface. It 
can be seen from Figs. 2 and 3 that with the introduction of 
thermal effects, the circumferential stress again is maxi-
mum at the internal surface for transversely isotropic circu-
lar cylinder under internal pressure. With increased value of 
temperature, it can be seen that the circumferential stress is 
increasing at the internal surface for transversely isotropic 
circular cylinder under internal pressure as compared to the 
isotropic circular cylinder. With increase in measure, the 
circumferential stress is decreasing at the internal surface 
for transversely isotropic/isotropic circular cylinder under 
internal pressure. With the introduction of thermal effects, 
it can be seen from Figs. 4–6 that the stress at the internal 
surface is decreasing with the increase of measure n. 
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NUMERICAL ILLUSTRATION AND DISCUSSION 

For calculating the stress distribution based on the above 
analysis, the following values of measure n, D and tempera-
ture 0 have been taken as: n = 1, 1/3 and 1/7 (i.e. N = 1, 3 
and 7); 0 = 0, 0.50, 0.75 and D = 1. The elastic constants 
Cij for transversely isotropic material (magnesium) and iso-
tropic material (brass) are given in Table 1. 

Nomenclature 

a,b – internal and external radii of cylinder (m) 
Table 1. Elastic constants Cij (in terms of 1010 N/m2). C1 – compressibility factor (-) 

u, v, w – displacement components (m)  C44 C11 C12 C13 C33

Transversely isotropic material (Mg) 1.64 5.97 2.62 2.17 6.17
Isotropic material (Brass) 1.0 3.0 1.0 1.0 3.0

Tij, eij – stress and strain rate tensor 
A1, A2 – constants of integration 
P – internal pressure (Pa) 

Curves have been drawn in Figs. 1–3 as creep stress vs. 
radii ratio R = r/b for transversely isotropic material/iso-
tropic material with and without thermal effects and differ-
ent measure. It can be seen from Fig. 1 that without 
temperature, circumferential stress is maximum at the inter-
nal surface for transversely isotropic/isotropic circular cyl-
inder under internal pressure for measure n = 1 and n = 1/3  

r – radial stress component (Trr/P) (-) 
– circumferential stress (T/P) (-) 
z – axial stress component (Tzz/P) (-) 
T – temperature (°F) 
R = r/b – radius ratio (-) 
R0 = a/b – radii ratio (-) 

         
Figure 1 Creep stresses in transv. isotropic thick-walled cyl. under int. pressure along R for different N (= 1/n) and without temp. (0 = 0). 
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Figure 2. Creep stresses in transv. isotropic thick-walled cyl. under int. pressure along R for different N and temperature 0 = 0.50. 

         
Figure 3. Creep stresses in transv isotropic thick-walled cyl. under int. pressure along R for different N and with temperature 0 = 0.75. 
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Figure 4. Creep stresses in a transv. isotropic thick-walled cyl. with int. pressure along R for N (=7) and temperature 0 = 0; 0.50; 0.75. 

         
Figure 5. Creep stresses in transv. isotropic thick-walled cyl. with int. pressure along R for N (=3) and temperature 0 = 0, 0.50, 0.75. 
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Figure 6. Creep stresses in transv. isotropic thick-walled cyl. with int. pressure along R for N (=1) and temperature 0 = 0, 0.50, 0.75. 

16.  Pankaj, T., Elastic-plastic transition stresses in a thin rotating 
disc with rigid inclusion by infinitesimal deformation under steady 
state temperature, Thermal Science, 14(1) (2010): 209-219. 
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