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Abstract 

In this paper an overview of wavelets vibration-related 
applications for evolutionary spectrum estimation, random 
field simulation, system identification, damage detection, 
and material characterization is given. 

Ključne reči 
• vremenska i frekventna analiza 
• vejvleti 
• vibracije-primena 

Izvod 

U ovom radu je dat pregled vibracije talasića - njihove 
primene u razvojnoj proceni gustine spektra, simulacije 
slučajnog polja, identifikacije sistema, detekcije oštećenja i 
određivanja osobina materijala. 

INTRODUCTION 

Wavelet-based approaches are significant tools for joint 
time-frequency analysis of problems related to vibrations of 
mechanical and structural systems. This applies to the 
characterization of the system excitation, the system identi-
fication, and system response determination. Several exam-
ples exist in nature of stochastic phenomena with a time-
dependent frequency content. The frequency content of 
earthquake records, for instance, evolves in time due to the 
dispersion of propagating seismic waves /1, 2/. Further, 
sudden changes in the wave frequency at a given location 
of the sea surface are often induced by fast moving of 
meteorological fronts /3/. Also, a rapid change in the 
frequency content is generally associated with waves at the 
breaking stage. Similarly, turbulent gusts of time-varying 
frequency content are often embedded in wind fields. 
Appropriate description of such phenomena is obviously 
crucial for design and reliability assessments. In an early 
attempt, concepts of traditional Fourier spectral theory were 
generalized to provide spectral estimates, such as the 
Wigner-Ville method /4, 5/. However, it soon became clear 
that the extension of the traditional concept of a spectrum is 
not unique, and proposed time-varying spectra could have 
contradictory properties /6, 7/. 

TIME-DEPENDENT SPECTRA ESTIMATION OF STO-
CHASTIC PROCESSES 

The first steps in time-frequency analysis trace back to 
the work of Gabor /8/, who applied for signal analysis a 
fundamental concept developed in quantum mechanics by 
Wigner /4/, a decade earlier. Gabor functions are shown in 
Fig. 1 for three different values of . Wavelet analysis is 
readily applicable for estimating time-varying spectral 
properties, and significant effort has been devoted to formu-
lating ‘wavelet energy principles’ that work as alternatives 
to classical Fourier methods. Measures of a time-varying 
frequency content were first obtained by sectioning, at 

different time instants, the wavelet coefficients mean square 
map /9-12/. Developing consistent spectral estimates from 
such sections, however, is not straightforward. From a 
theoretical point of view, either it requires an appropriate 
wavelet-based definition of time-varying spectra or it must 
relate to well-established notions of time-varying spectra. 
From a numerical point of view, it involves certain difficul-
ties in converting the scale axis to a frequency axis, espe-
cially when the frequency content of wavelet functions at 
adjacent scales do overlap. 

Investigations on wavelet-based spectral estimates may 
be found in references such as /13-18/, where wavelet 
analysis has been applied in the context of earthquake engi-
neering problems. In a particular approach, a modified 
Littlewood-Paley (MLP) wavelet basis can be introduced, 
whose mother wavelet is defined in the frequency domain 
by 
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where symbol  denotes a scalar factor, to be adjusted 
depending on the desired frequency resolution. 

In /19/, Spanos and Failla have applied wavelet analysis 
to estimate the evolutionary power spectral density (EPSD) 
of non-stationary oscillatory processes defined as, /20/, 
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where symbol A(,t) denotes a slowly varying time- and 
frequency-dependent modulating function, and Z() is a 
complex random process with orthogonal increments. The 
wavelets transform of f(t), Eq.(2), may be approximated as 
an oscillatory stochastic process. 
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Figure 1. Plots of Gabor function for three values of frequency. 

Slika 1. Krive funkcije Gabora za tri vrednosti frekvencije  

Figure 1 shows plots of the Gabor function: 
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versus the independent variable t for three values of the 
frequency , where for t0 = 0, 
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RANDOM FIELD SIMULATION 

The use of wavelets for random field synthesis can be 
examined within the more general framework of scale-type 
methods. The latter have been developed to improve the 
computational performances of Monte Carlo simulations. 
Classical methods such as the spectral approach /21/ or the 
autoregressive moving average (ARMA) /22/, are not read-
ily applicable for this purpose, especially when using non-
uniform meshes or when enhancement of local resolution is 
desirable. To address these shortcomings, Fournier et al. 
/23/ have proposed a ‘random mid-point method’ to synthe-
size fractional Brownian motion. That is, a scale-type 
method where values of the random field for points within a 
coarser scale are generated first, and then the generated 
samples are used to determine values for a finer scale. This 
approach has been extended by Lewis /24/ into a general-
ized stochastic subdivision method, suitable for a broad 
class of stationary processes, and by Fenton and Vanmarcke 
/25/ into a local average subdivision method, which 
includes a random field smoothing procedure producing 
averages of the field for an increasingly finer scale. Further 
studies on the role of wavelet analysis in stochastic 
mechanics applications may be found in /26/. 

SYSTEM IDENTIFICATION 

Wavelet analysis lends itself to system identification 
applications. For instance, frequency localization properties 
allow detection and decoupling of individual vibration 
modes of multi-degrees-of-freedom (MDOF) linear sys-
tems. The wavelet representation of the system response 
can be truncated to an appropriate scale parameter, in order 
to filter measurement noise. Also, the wavelet transform 
coefficients can be related directly to the system parame-
ters, as long as specific wavelet families are used. Early 
investigations trace back to the work by Robertson et al. 
/27/, who have used the DWT for the estimation of the 
impulse response function of MDOF systems. Compared to 
alternative time-domain techniques, the DWT-based extrac-
tion procedure offers significant advantages. It is robust, 
since singularities in the procedure related matrices can 
generally be avoided by selecting orthonormal wavelet 
functions. Further, the reconstructed impulse response func-
tion captures the low-frequency components, referred to as 
static modes and mode shape errors, which ordinarily are 
difficult to estimate. An important application of wavelet 
analysis to structural identification is due from Staszewski 
/28/, who has used complex Morlet wavelets for modal 
damping estimation. Specifically, Staszewski has inter-
preted in terms of the wavelet transform some concepts 
already used in well-established methods, where the Hilbert 
transform has been applied to a free-vibration linear 
response, /29/. Staszewski /28/ has also proposed an alter-
native damping estimation method based on the ridge and 
skeletons of the wavelet transform. A ridge is a curve of 
local maxima in the mean-square wavelet map and the 
corresponding skeleton is given by the values of the wave-
let transform restricted to the ridge. Due to the localization 
properties of the wavelet transform, the ridges and skele-
tons of the wavelet transform can be detected separately for 

 ,    = 1. (4)
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each mode. Specifically, the real part of the skeleton of the 
wavelet transform gives the impulse response function for 
each single mode, from which a straightforward estimate of 
the damping ratio is obtained from a logarithmic equation, 
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A generalization of the method for non-linear systems 
can also be formulated, /30/. Ruzzene et al. /31/ have also 
presented a damping estimation algorithm based on the 
same concepts and leading to analogous results. Certain 
issues have been addressed in detail, concerning the fre-
quency resolution of the adopted wavelet families, crucial 
for detecting coupled modes, and appropriate algorithms for 
ridge extraction, /32/. Lardies and Gouttebroze /33/ have 
estimated modal parameters via ambient records, without 
input measurements. To this end, the random decrement 
method (see /34/, and references therein) has been used to 
convert ambient vibration response into a free vibration 
response. Also, a modified Morlet wavelet has been devel-
oped with enhanced properties for modal parameter estima-
tion. The method devised by Staszewski and Ruzzene et al. 
has also been implemented by Slavic et al. /35/, by replac-
ing Morlet wavelets by Gabor wavelets, whose time and 
frequency resolutions may be adjusted by an appropriate 
parameter. Explicit conditions have been given on the 
frequency bandwidths of the Gabor wavelet transform, in 
order to estimate the instantaneous frequencies of two 
adjacent modes. Damping coefficients have been estimated 
using a logarithmic decrement formula, where the ratio of 
the wavelet transform at two subsequent extremes of the 
pseudo-period Tj = 2π/ωj of the response in each mode is 
involved, for a selected wavelet transform scale, /36/. For 
the procedure to estimate the damping coefficient associ-
ated with the fundamental mode, it is sufficient to adapt the 
analysing scale so that the higher-frequency modes are 
filtered. For an arbitrary mode j, low-pass filtering is used 
to cancel the fundamental and the first j – 1 modes. Ghanem 
and Romeo /37/ have formulated a wavelet-Galerkin method 
for time-varying systems, where both damping and stiffness 
parameters are computed by solving a matrix equation. The 
latter is built by a standard Galerkin method, by projecting 
the solution of the differential equation of motion onto a 
subspace described by the wavelet scaling functions of a 
compactly supported Daubechies wavelet basis. The 
method is accurate for both free and forced vibration 
responses. A formulation for non-linear systems has also 
been proposed /38/. Another application is due to Yu et al., 
who have used wavelet transform to identify the parameters 
of a Preisach model of hysteresis; see /39, 40/, and refer-
ences therein. The output function of the Preisach model is 
expanded in terms of the scaling functions of a given 
wavelet family. Then, the coefficients of such an expansion 
are determined by fitting a number of experimental data 
points with a minimum energy method. From the output 
function, the so-called Preisach function can be determined 
in a closed form. An interesting use of wavelet analysis for 
detecting non-linear behaviours in structures has been 
proposed by Argoul and Le, /41/. From the Cauchy wavelet 
transform of the transient response, four instantaneous indi-

cators have been singled out, based on which an appropriate 
analytical model may be constructed for the structure. Spe-
cific applications have involved a non-linear beam excited 
by an impact hammer. In this context, note that further 
applications of wavelet analysis to non-linear vibrating 
systems may be found in the extensive work Pernot and 
Lamarque /42, 43/. 

DAMAGE DETECTION 

Properties of the wavelet transform are also quite appeal-
ing for damage detection purposes. Early investigations in 
this field /44, 45/ used wavelet analysis to detect local faults 
in machineries. Visual inspection of the modulus and phase 
of the wavelet transform has been used to localize the fault 
/44/. Further, it has been shown that transient vibrations due 
to developing damage are disclosed by the local maxima of 
the mean-square wavelet map, /45/. Additional results have 
been then proposed by Boulahbal et al. /46/. Specifically, 
the latter suggested a combined use of amplitude and phase 
map to distinguish the nature of damage, such as a cracked 
tooth. Also, they have pointed out that a Morlet CWT 
amplitude map performs better if applied on an ‘overall 
residual’ signal, obtained by filtering out the gear meshing 
frequency from the time synchronous averaged signal. A 
confirmation in this sense has been given by Dalpiaz et al. 
/47/ and Wang et al. /48/, for a variety of types of damage. 
Applications in machinery fault diagnostics have been also 
proposed by Adewusi and Al-Bedoor /49/, who used 
Daubechies wavelets to monitor startup and steady-state 
vibrations of an overhang rotor with a propagating crack. 
Results in terms of amplitude map have shown how the 
crack propagation may reduce the critical speed of the rotor 
and determine continuous changes in the amplitude of the 
vibration harmonics, unlike imbalance or misalignment 
which generally show constant amplitude, /50/. For this, a 
new family of wavelets reflecting the boundary conditions 
has been introduced. Then, Wang and Deng /51/ used Haar 
and Gabor wavelet transforms on the numerical displace-
ment response of statically loaded cracked beams and 
plates. The method has proved robust for various boundary 
conditions and damage characteristics, such as crack length, 
embedment, orientation and width, with a relatively low 
spatial resolution of measurement data, /52/. However, no 
investigation has been performed on the feasibility of the 
method in the presence of noise and no relation has been 
found between the characteristic values of the wavelet 
transform and the damage degree. A first attempt to esti-
mate the damage degree was made by Okafor and Dutta, 
/53/. Specifically, Daubechies wavelets were used to wave-
let transform the mode shapes of a damaged cantilever 
beam, and a regression analysis by a least-squares method 
was conducted to correlate the peaks of the wavelet coeffi-
cients with the corresponding damage degree. 

Wavelet analysis has also yielded encouraging results for 
global structural health monitoring. In this regard, interest-
ing results have been presented by Hera and Hou /54/, who 
applied Daubechies wavelets to American Society of Civil 
Engineers (ASCE) benchmark study data. Specifically, a 
four-story, two-bay by two-bay prototype steel building 
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subjected to stochastic wind loading has been considered. It 
has been shown that the occurrence of damage, due to a 
sudden breakage of interstory braces, is revealed by a spike 
in the high-resolution wavelet details of the acceleration 
response data. Further, the location of the damage region 
may be determined by the spatial distribution pattern of the 
spikes in the acceleration responses at some representative 
points in the structure. An attempt to extend the method to 
damage events of finite time duration has been also pro-
posed by Hou et al. /55/, based on experimental data from a 
shaking table test of a full-size two-story wooden frame. 

Wavelet analysis has been also used for damage detec-
tion in composite structures. In a first attempt, Zhu et al. 
/56/ presented wavelet transformed experimental data of 
delaminated carbon reinforced composite plates, but no 
quantitative determination of the location and amplitude of 
the defect was given. Then, Staszewski et al. /57/ used a 
cross-wavelet analysis to improve the interpretation of 
Lamb wave data related to defects in a carbon fibre com-
posite plate. The Lamb waves, in fact, prove quite effective 
since they can propagate over long distances in the compos-
ite material and can interfere with damage. Sung et al. /58/ 
applied the Daubechies wavelet transform on the acoustic 
emission waves generated by low-velocity impact loads to 
determine damage modes and size in composite laminates. 
Specifically, they found a relation between levels of detail 
of the wavelet transform and damage modes such as matrix 
cracks and delamination. In order to detect small and incipi-
ent damage, Yam et al. /59/ have devised a method based 
on the energy variation of the vibration response due to the 
occurrence of damage. The method is implemented in two 
steps. The first involves the construction of damage feature 
proxy vectors using the energy at various scales of the 
wavelet transformed vibration response. Then, classifica-
tion and identification of the structural damage status is 
pursued by using artificial neural networks (ANNs), which 
offer significant advantages compared to genetic algorithms 
(GAs), developed by Moslem and Nafaspour /60/ for 
damage identification purposes. GA-based damage detec-
tion requires repeatedly searching among numerous damage 
parameters to find the optimal solution of the objective 
function. Yet another approach for applications of wavelet 
analysis for damage detection in composite plates has been 
discussed by Paget et al., /61/. It is based on Lamb waves 
generated and received by embedded piezoceramic trans-
ducers. To characterize the damage, the Lamb waves are 
wavelet transformed using an original wavelet family, 
devised from the recurrent waveforms of the Lamb waves. 
The changes in the Lamb waves interacting due to the 
occurrence of damage are captured by the amplitude change 
of the wavelet coefficients. From this effect, an estimate of 
the impact energy and the damage level is obtained based 
on experimental results. 

MATERIAL CHARACTERIZATION 

The description of material properties is another applica-
tion for wavelet analysis. Intuition suggests that multiscale 
analysis is a natural way for describing microstructure or 
material heterogeneity. Various, in fact, are the examples of 

multiscale microstructures, such as porosity distributions in 
ceramics, defects, dislocations, grain boundaries, and pores. 
It is important, however, to understand how information at 
different scales is related, and whether large or small scales 
affect macroscopic material properties such as deformation, 
toughness, and electrical conductance. Additional interest 
towards a multiscale description of material properties is 
motivated by the need for alternatives to the standard finite 
element method (FEM). The latter, although capable in 
principle, cannot simulate efficiently the actual behaviour 
of materials such as aluminium alloys, where pores may 
attain a size up to 500 m, and inclusions may attain sizes 
up to 3-6 m in diameter. Further, in FEM-based methods 
the constitutive response of the material at increasing scales 
is not the result of microstructural analysis at smaller 
scales, but it is rather assumed on the basis of macroscopic 
experiments. 

Willam et al. /62/ have performed multiresolution homo-
genization based on a recursive Schur reduction method, in 
conjunction with the Haar wavelet transform. The method 
allows coarse grained parameters, such as Young’s 
modulus of elasticity, to be extracted from fine grained 
properties at the mesoscale and microscale. Also, progres-
sive elastic degradation can be modelled, which initiates at 
a quite fine scale and evolves into a macroscopic zero stiff-
ness at the continuum level. 

Frantzikonis /63/ has focused on stationary and isotropic 
porous media. The geometry of porous media is generally 
described in terms of a fundamental function, defined as 
unity for spatial locations in the matrix and as zero for 
locations in the pores or flaws. At a solid-flaw interface the 
porous medium is represented mathematically through a 
local jump in the fundamental function. It has been found 
that such a jump can be captured by a wavelet transform, as 
long as the finest scale is small enough relative to the size 
of the pores. From this fact, a relationship between the 
energy of the wavelet transform of the porous medium, and 
the variance and the correlation distance of the solid phase 
can be derived. In the presence of heterogeneous materials, 
with multiscale porosity, the role of porosity at each scale 
has been identified through the variation of the energy of 
the wavelet transform as a function of scale. Peaks of the 
energy reveal the dominant scale in determining macro-
scopic properties of the materials, such as mechanical fail-
ure. Specifically, a biorthogonal spline with four vanishing 
moments has been employed as a wavelet family. The 
results obtained have been subsequently extended in a 
second study, addressing the crack formation in an alumin-
ium alloy with distributed pores and inclusions /64/. The 
problem, implemented for a one-dimensional solid, is 
tackled by wavelet transforming the flexibility function, 
assumed to vary along the longitudinal axis of the one-
dimensional solid. The relationship between the energy of 
the wavelet transform and the variance of the flexibility is 
used to detect the dominant scale in the crack formation 
process. Note that an application of a two-dimensional 
wavelet transform has been described in /65/ for porosity 
classification on carbon fibre reinforced plastics. 
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CONCLUDING REMARKS 

Concepts of wavelet-based continuous and discrete 
representations of signals have been reviewed. Further, 
included is an overview of vibration-related applications for 
evolutionary spectrum estimation, random field simulation, 
system identification, damage detection, and material 
characterization. The list of references cannot be exhaustive 
and, thus, other perhaps relevant applications of the wavelet 
transform have been omitted for succinctness; for instance, 
we mention the wavelet-based analysis of elastic waves in 
solids for which interesting contributions can be found in 
references such as /66, 67/. Nevertheless, it is believed that 
the references cited in this paper can serve as readily avail-
able resources for canvassing the multitude of concepts and 
applications of wavelet analysis, this remarkable tool for 
capturing and representing localization features of many 
physical phenomena. Wavelet-based algorithms and com-
mercial codes are indeed an indispensable family of tools 
for vibration analysis, and offer, in many cases, a potent 
improvement over the classical Fourier transform based 
approaches. 
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