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Abstract 

Direct measurement of J integral has been analysed in 
respect to the effect of material (heterogeneity and strength-
ening) and different boundary conditions, enabling its appli-
cation to pressure vessels with a crack in welded joint. It has 
been shown that modifications of the original expression are 
needed. The possibility of applying direct measurement of J 
integral for pressure vessel integrity assessment has been 
considered. 

Ključne reči 
• direktno merenje J integrala 
• cilindrična posuda pod pritiskom 
• heterogenost materijala 
• granični uslovi 

Izvod 

Direktno merenje J integrala je analizirano u odnosu na 
uticaj heterogenosti i ojačavanja materijala, kao i različitih 
graničnih uslova, a u cilju primene na posude pod pritis-
kom sa prslinom u zavarenom spoju. Pokazano je da su 
neophodne modifikacije originalnog izraza. Takođe su 
razmatrane mogućnosti primene direktnog merenja J inte-
grala kao metode procene integriteta posude pod pritiskom. 

INTRODUCTION 

Unlike the standard determination of the J integral, direct 
measurement is based on the path independence of the J 
integral, by choosing the most suitable (outer) contour. 
Because of this, the measured values do not depend on 
crack length, making this method more universal than the 
standard ones, more so because the shape and dimension of 
specimens are irrelevant. On the other hand, direct meas-
urement is more complicated and expensive than the stan-
dard procedure, since it requires the use of strain gauges, 
including chains for strain measurements in a large number 
of points located over a distance, as small as possible. 

The basic form of the method is defined by Oh, /1/, but it 
was first applied in fracture mechanics by Read and his 
associates, /2/. The first version of the application was for 
thin, wide plates with edge cracks, subjected to loads that 
enable rotation of outer edges, Fig. 1. A measuring error 
was assessed to be 3–5%, /2/, and this it is primarily caused 
by integration with a finite number of points. 

Its next application was related to central surface cracks 
/3/ in a plate fixed by jaws in such a way that prevents the 
rotation of edges under the load. In this case, basic relations 
remain the same, but the error margin is increased to 10% 
/3/, since the 3D nature of the problem is partially neglec-
ted. This leads to obvious disruption of boundary condi-
tions, same as when applying four point bending to a plate, 
as discussed in paper /4/. Further modifications and appli-
cations included elastic-plastic material with strengthening 
instead of an elastic-ideal plastic material, /5/, heteroge-
neous material (welded joints) instead of homogeneous, /6/, 
and biaxial tension instead of uniaxial, /5/. 

Read’s original paper 

The principle of the method consists of determining the J 
integral by calculating integrand members for the corre-
sponding contour, Fig. 1, according to the formula: 

 
u

J Wdy T ds
x


 




 (1) 

where x and y represent Cartesian coordinates with an 
origin at the tip of an edge crack, Fig. 1, W is the strain 

work density, T


 is the tension vector on contour , u


 is 
the displacement vector, and ds is a curvilinear element of 
contour . The stress-strain curve representing the elastic-
ideally plastic material behaviour, to which the method will 
be applied, is given in Fig. 2. 

 
Figure 1. Contour on a tensile specimen with an edge crack. 
Slika 1. Kontura na zateznoj epruveti sa ivičnom prslinom 
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Figure 2. Stress-strain curve for elastic-ideally plastic material 

behaviour. 
Slika 2. Kriva napon-deformacija za elasto-idealno plastično 

ponašanje materijala 

As can be seen in Fig. 1, the problem is symmetrical to 
the crack plane, hence strain gauges are placed only along 
one half of the specimen contour. The choice of contour is 
in accordance with its geometry and position of the edge 
crack, so that this contour is made of free specimen surfaces 
along the y axis, away from the crack plane. Plane stress 
state is expected along this contour, since its thickness is 
small in comparison with the length and width of specimen 
and there are no stresses in that direction. 

Two integrand expressions in Eq.(1), i.e. the strain 

energy member Wdy and tensile-bending member 
u

T ds
x





 

are calculated for contour segments AB, CD and BC as 
follows. 

The strain work density W is determined from: 

 ij ijW d    

where ij is the stress tensor and ij is the strain tensor. The 
full expression is given as: 

 
xx xx yy yy zz zz

xy xy yz yz zx zx

W d d d

d d d

     

     

  

  
 

 

For the plane stress state one gets: 

 zz = 0,   yz = 0,   zx = 0 
hence: 
 xx xx yy yy xy xyW d d d         

i.e., for contour segments AB and CD 

 yy yyW d    

since stress tensor components along the free surface are all 
equal to zero, except yy. 

Within the area of linear elasticity, before the yield stress 
is reached, the following law applies: 

 yy yyE   

hence the yield criteria is Eyy = Re, where Re is the nominal 
yield stress of the material. In the case that the elastic-
ideally plastic law of material behaviour is adopted, Fig. 2, 
the following expressions apply: 

 yy = Eyy   for   yy  eR

E
 

 yy = Re   for   yy > eR

E
 

By using these expressions, the strain energy density 
becomes: 
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Segment BC, where the contour intersects with the 
specimen, needs to be at a sufficient distance from the crack 
plane in order to avoid the effects of crack tip on stress-
strain distribution fields. 

Expressions for strain energy density obtained in this 
way are used for calculating the first member of the J 
integral along the contour segments AB and CD. Tensile 

force T


 equals zero along the contour segments AB and 
CD, since they are located at free surfaces, hence the 
second member in the J integral expression equals zero for 
these segments. On segment BC, dy = 0, since this segment 
is parallel to the x axis, hence the first member equals zero 

for this segment. Tensile force T


 is calculated as: 

 Ti = ijnj   (i,j = x,y,z)
where nj is the unit vector along the outer normal to the 
contour . Taking plane stress state into account, the fol-
lowing expressions apply in the Cartesian coordinate system: 

 Tx = xxnx + xyny ;   Ty = yxnx + yyny 
Along segment BC, ny = 1, and nx = 0, so one gets: 

 Tx = xy ,   Ty = yy . 

Shear component xy can be neglected since the chosen 
contour segment is parallel to the x axis and at a sufficient 
distance from the crack. Component ux of the displacement 
vector u


 along segment BC can also be neglected, since 

there is no displacement in that direction. Hence the first 
integrand member in J integral for the contour segment BC 

is reduced to the product of the tensile force T


 and the 
change in displacement vector u  along the x axis. Tensile 
component Ty is obtained from strain, measured using strain 
gauges at points B and C, Fig. 1, since all stress compo-
nents except yy can be neglected along the segment BC. 
Bending member uy/x along segment BC can be ex-
pressed as: 



 
(C) (B)

(C) (B)
y y yu u u

x x x

 


 
 (2) 

where displacements uy(C) and uy(B) at points C and B are 
measured using a linear variable differential transformer 
(LVDT). Variables x(C) and x(B) represent coordinates at 
points C and B, and the difference between them, x(C) – 
x(B), represents the specimen thickness. Strain yy is 
obtained from strain gauges, which are set according to 
Fig. 3. These values of strain for calculating the work 
density W are limited to a finite number of locations along 
segments AB and CD, hence the value of the J integral is an 
approximation. 
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Figure 3. Instrumentation for tension tests of the edge cracked 

specimen. 
Slika 3. Instrumentacija za ispitivanje na zatezanje epruvete sa 

ivičnom prslinom 

Calculation of tensile-bending member, JBC, is reduced 
to multiplying Ty(yy) with u(C) – u(B), since ds = dx. By 
using numerical integration, it is possible to determine the 
values of displacements uy(C) and uy(B) via strain distribu-
tion, using the following expressions: 

    and   
C

D

(C)y yu d  y y
B

A

CMOD
(B)

2y yyu dy   

where CMOD is the crack mouth opening displacement, 
measured using a special gauge, Fig. 3. 

Direct numerical integration is used for calculating 
members in Eq.(1), since segments DC and AB are divided 
into smaller segments, each containing a single strain gauge. 
Each segment contribution is taken into account as the 
product of strain energy density, calculated from the meas-
ured strain from Eq.(2), and segment length. Thus, 
members JAB, JBC and JCD are then added in the following 
way: 
 J = 2(JAB + JCD + JBC) 

MODIFICATIONS OF THE ORIGINAL EXPRESSION 

Material strengthening and heterogeneity 

For obtaining a modified stress-strain curve with the use 
of elasto-plastic law with linear material hardening, the 
constant H’ is introduced. It defines the slope of the curve 
in the plastic area, Fig. 4, hence the stress now becomes: 

 e
yy e yy

R
R H

E
     

 
   for   e

yy
R

E
   

The strain work density for yy  Re/E becomes: 

 
221 1
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e e

e yy yy
R R

W R H
E E

           
   

eR

E
 

whereas the remaining J integral members are the same. 

As shown in paper /6/, by applying the direct measure-
ment of the J integral to welded joints requires the introduc-
tion of an additional line integral which brings back the 
feature of path independence. Since the additional integral 
is impossible to measure because its contour passes along 
the thickness direction (plane), the application of the direct 
measurement of the J integral is limited to welded joints 
where the influence of material heterogeneity is negligible. 
Author’s experience has shown that this condition is gener-
ally fulfilled by homogeneous welds, /7-8/, whereas in case 
of welds such as ferrite-austenite, the additional integral 
needs to be taken into account. 

 
Figure 4. Stress-strain curve for a hardening material. 

Slika 4. Kriva napon-deformacija za materijal koji ojačava 

Two-dimensional stress analysis – pressure vessels 

Direct measurement of the J integral can be applied to 
pressure vessels, assuming that differences in geometry, i.e. 
biaxial stress state is taken into account. For example, a 
cylindrical pressure vessel (with radius R and thickness t, 
(t << R) can be treated as a thin plate (with a curve), sub-
jected to tensile load (circumferential and axial), in plane 
strain state conditions. An axial crack is of particular sig-
nificance for cylindrical vessel analysis, since circumferen-
tial stress, y is two times larger than axial stress, x: 

 0x     y
pR

t
     

2z
pR

t
   

Based on the relation between stress and strain, the 
corresponding strain components are calculated as: 

 
3

2x x z y
pR

E
t
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 1
2y y z x
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E
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 

 

For Poisson’s ratio values of  = 0.3, these relations 
become: 

 0.2x
pR

E
t

     0.85y
pR

E
t

     0.45z
pR

E
t

    

By introducing appropriate values for stresses in equiva-
lent stress equation, the following is obtained: 
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Fixed point- and four-point bending – modification of boun-
dary conditions 

Equivalent strain   follows from Hooke’s law: 

 0.866
pR

E E
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t

 

Knowing that normal stress along the y axis in case of 
biaxial stress state is: 

 
2

( )
1

y y
E
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and by using relations between strains y and z, values of 
circumferential stress can be obtained: 

 
2

0.5
1.18

1 0.51
y y y

E
E


y    


      

 (3) 

If the ends of the plate are in the jaws of the testing 
machine so that they cannot rotate, then the boundary 
conditions change, or the tension-bending member becomes 
zero. This simple fact has not been noticed in the works 
dealing with such investigations, e.g. /3/, but it does not 
mean that the results are incorrect. Actually, it means that 
they can serve as a verification of the above mentioned. The 
situation is similar for pressure vessels, but in that case 
there is still a possibility for (small) rotation of loaded ends. 
Therefore, here are presented results of experimental inves-
tigation in which the components of the J-integral are 
separated into the tension-bending component, ST, and the 
deformation component, SW, so it follows: J = SW – ST. 
The mentioned components are presented in Figs. 5 (ST) 
and 6 (SW), taken from /9/, in both cases for wide plates 
under tension with under-matching and over-matching 
welded joints. Also, in Fig. 5 some of the ST components 
are presented, from measured CMOD (STCMOD), from 
base metal (STBM) and from weld metal (STWM), so it 
follows: ST = STBM + STWM – STCMOD. 

being larger than the value of the normal stress y = Ey, in 
the case of uniaxial interpretation of stress, over 18%, i.e. 
2/(2 – ). If Eq.(3) is included in the expression for equiva-
lent stress, the following is obtained: 

 
3 2 3 3

1.02
2 2 2 2 0.3y y yE E E yE   

 
   
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     

so that the equivalent stress and equivalent strain are calcu-
lated according to: 

 
3

2 y   ;   
3

2 y 

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Since y is the measured strain, the corresponding yield 
criterion becomes: 

 e  ,   or   1.02 e
y

R

E
  , Average strain 

(b)

  

and since 

 0.866 eRpR

Et E
 , 

it can be concluded that the yield criterion for biaxial stress 
state is fulfilled (Von Mises criterion): eR  . 

Finally, the measured strain, y, must meet the following 
condition in the region of material yielding, based on the 
previous analysis: 

 
1.02

e
y

R

E
   

which can be interpreted as a yield stress reduction (for a 
factor of 1.02), hence, equations for calculating the J inte-
gral can still be applied, assuming that this correction is 
made. It is also clear that for common calculations, this 
correction is negligible. However, it should be mentioned 
that in the case of spherical vessels, this factor would be 
considerably larger, around 1.3. 

Average strain 

Figure 5. ST component of J integral, a) under-, b) over-matching, /9/ 
Slika 5. ST komponenta J integrala, a) ander-, b) over-mečing, /9/ 

In Fig. 6 contributions of SW components are presented, 
one from the crack side (SWN) and the other from the 
smooth side (SWUN). 
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(a) 

  

(b)  

 
 Average strain Average strain 

Figure 6. SW component of J integral: a) under-, b) over-matching, /9/ 
Slika 6. SW komponenta J integrala: a) ander-, b) over-mečing, /9/ 

 
Figure 7. Deformation on the crack side and on the smooth side: a) under-matching, b) over-matching, /9/ 

Slika 7. Deformacije na strani prsline i na glatkoj strani: a) ander-mečing, b) over-mečing, /9/

Although these results basically show the already men-
tioned tendency, since in the over-matching joint ST  0 
and SW  300 N/mm (for a remote deformation of 0.034), 
and in the under-matching joint ST  –200 N/mm and 
SW  500 N/mm (for a remote deformation of 0.018), it is 
obvious that there also influence of material homogeneity. 

In fact, as it can be seen from Fig. 7, the distribution of the 
deformation is significantly different for the over-matching 
and the under-matching joint, and apparently a concentra-
tion and asymmetry of plastic deformation in the case of the 
under-matching joint, which is not in accordance with the 
assumption that CMOD is divided into two equal parts, and 
so this is used to calculate the ST in the study, /9/. 
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On the other hand, four-point bending requires further 
modification of the equations given here, since in that case 
the stress distribution yy at the free edges is linear. Conse-
quently, component JBC becomes zero since it reduces to 

 , 
C C

2 2
C B

B B

0yydx xdx x x     

whereby the coordinate system is placed as in Fig. 8. In that 
case, the J integral reduces to a difference of deformation 
energies at the smooth side and at the side of the crack, and 
CMOD measurement is not necessary. It is interesting to 
notice that the J integral is interpreted in the same way as in 
the study /1/, with graphical presentation as in Fig. 8. 

 

 
Figure 8. Deformations on the crack side and on the smooth side: 

interpretation of the J integral, /1/. 
Slika 8. Deformacije na strani prsline i na glatkoj strani: 

tumačenje J integrala, /1/ 

DISCUSSION 

It has been shown that modifications of the original 
expression for direct measurement of the J integral are 
necessary due to material heterogeneity and strengthening, 
as well as due to different boundary conditions and stress 
state in order to apply this simple experimental technique 
for pressure vessels with a crack in the welded joint. 

In this paper, results indicate that the effects of material 
heterogeneity and strengthening are not significant for 
common ferritic steels, but may become significant if an 
austenitic steel is used for dissimilar welded joints. 

Different boundary conditions can be an important effect 
when applying the direct measurement of the J integral to 
pressure vessels. Fixed ends of the integration path, instead 
of the rotating ones, change even the basic expression 
because of the different remote stress distribution. This has 
been clearly shown in the paper, but needs further consid-
eration. 

The biaxial stress state, as typical for pressure vessels, 
turned out to be important only for the spherical shape, and 
not also for the cylindrical. 

Another important issue is possible application of Digital 
Image Correlation (DIC) technique of strain measurement 
instead of strain gauges, /10-12/. Although limited to outer 
surface measurements, this technique could be used for 
integrity assessment of pressure vessels with cracks located 
inside. Namely, a combination of measured strain distribu-
tion on the outer surface, a numerical evaluation of CMOD 
and a simple assumption that the inside strain distribution 
can be represented as bilinear (constant at the remote end 
up to the point where the maximal stain appears on the 
outer surface, and then reduces to zero at the location of the 
crack), leads to the simple evaluation of the J integral as a 
difference of strain energy densities on outer and inner 
surfaces, plus the contribution of CMOD. This possibility 
should be further elaborated, since it can lead to a simple 
Non-Destructive Technique (NDT), applied as a monitoring 
tool for pressure vessel testing. 

CONCLUSIONS 

Based on the results presented in this paper, one can 
conclude: 
 The effect of the material heterogeneity, unless dissi-

milar welded joints are analysed (e.g. ferrite-austenite), 
is negligible. 

 The effect of strengthening is also not significant, ex-
cept for austenite and similar materials, with large 
plasticity and a significant difference between yield 
and tensile strength. 

 Based on the introduced expressions for the bi-axial 
stress state, one can conclude that the difference is 
negligible (2%) in the case of a cylindrical pressure 
vessel, whereas it can be significant (30%) in the case 
of a spherical pressure vessel. 

 The possibility of using direct measurement of J integ-
ral as a technique for pressure vessel integrity assess-
ment has been introduced, based on the application of 
DIC for strain measurement on the outer surface, the 
numerical evaluation of CMOD and the assumption of 
bilinear strain distribution on the inner surface. 
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The 20th European Conference on Fracture will take place at Trondheim, 30 June – 4 July 2014, Trondheim, Norway. 
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