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Abstract 

The paper presents a realistic basis for performing an 
experimental verification of the material strength theory of 
a composite plate exposed to plane stress. Logical theoreti-
cal relations for calculating parameters for the sake of 
comparison to experimental results are given. A reliable 
measuring and testing system with a technology for acquisi-
tion of experimental data is used. On the basis of an identi-
cal given model for the calculation and experimental verifi-
cation of theoretical results, the parameters are calculated, 
then measured and compared. The results show a good 
level of accordance and maintain a satisfying level of accu-
racy of the applied theory. Some results have shown disper-
sion, mainly with measured displacements in the normal 
direction to the loading axis. The final evaluation of the 
theory requires the calculation to be carried out with 
correct real values of mechanical characteristics. Since the 
correction factors for elastic mechanical characteristics of 
composite materials, that appear as a consequence of spe-
cific manufacture (possible defects include: de-lamination, 
broken fibres, material nonhomogeneity), are in the range 
1.2 to 1.4, depending on the composite type, we can assume 
that the obtained results are within acceptable limits. This 
may confirm the sustainability of the presented structural 
analysis theory of composites with linear elastic behaviour. 

Ključne reči 

• kompozitni materijal 
• ortotropna ploča 
• MKE 
• pomeranja 
• deformacije 
• eksperimentalna verifikacija 

Izvod 

U radu je prezentirana realna osnova vođenja procesa 
eksperimentalne verifikacije teorije otpornosti kompozitne 
ploče izložene naprezanju u ravni. Izložene su logične 
teorijske relacije, izabran je pouzdan merno-ispitni sistem 
sa tehnologijom prikupljanja podataka o izmerenim veliči-
nama i izvršena su adekvatna ispitivanja. 

Na osnovu istovetnog zadatog modela za proračun i 
eksperimentalnu verifikaciju teorijskih rezultata, proraču-
nati su, a zatim i izmereni, rezultati koji kada se uporede 
pokazuju zadovoljavajuću saglasnost, čime se dokazuje 
održivost nivoa tačnosti primenjene teorije. Evidentirana je 
i disperzija nekih rezultata, pre svega kod izmerenih pome-
ranja u poprečnom pravcu u odnosu na osu opterećenja. 

Za konačnu ocenu teorije, proračun treba da se izvede 
sa tačnim stvarnim vrednostima mehaničkih karakteristika. 
Obzirom da se korekcioni faktori za elastomehaničke 
karakteristike kompozitnih materijala, koji su posledica 
konkretne realizacije konstrukcije (mogući defekti su: dela-
minacija, prekinuta vlakna, nehomogenost materijala), 
kreću  od 1,2 do 1,4, u zavisnosti od tipa kompozita, može se 
smatrati da su ovde dobijeni rezultati u granicama prihvat-
ljivih, te se time može potvrditi održivost predmetne teorije 
za strukturalnu analizu kompozita sa linearno elastičnim 
ponašanjem. 

INTRODUCTION 

The nature of composite materials is such that it requires 
careful selection of concepts that describe its elastic mecha-
nical behaviour. So in the case of plane stress analysed 
here, an experimental verification of the theory is required 
to reach a sustainable calculation of an orthotropic structure 
with linear elastic behaviour, to know with certainty how 
do theoretical results deviate from the exact (experimental) 
results, and to be able to compensate for defects resulting 
from manufacture and processing of composite structures, 
/1, 2/. 

Subject thin plate structures are common in complex 
composite structures of aircraft, ships, cars, products with 
specialised purposes, various interiors and so on. At first, 
theoretical relations are presented, and secondly, the agree-
ment is shown of experimental and theoretical results, 
based on the relations of composite material plate strength 
(examples of various structures) in a block of structural 
analysis based on the finite element analysis (FEM). 
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BASIC THEORETICAL RELATIONS APPLIED TO THE 
DISPLACEMENT – STRAINS OF FINITE ELEMENT 

The basic element of the structure is taken as a triangular 
plate in the plane stress state, Fig. 1. Experimental verifica-
tion shall be conducted for the numerical concept of mate-
rial strength on a triangular element, based on composite 
laminate, in such a manner with the use of geometric 
parameters vs. displacement relations in order to determine 
the deformations that can be further compared to measured 
values at the same locations or positions in the structure, /3, 
4/. Obviously, the proof of compliance of displacements 
can be obtained by comparing calculated and measured 
corresponding displacements. 

 
Figure 1. Triangular finite element (composite plate-plane element). 
Slika 1. Trouglasti konačni element (kompozitna ploča-ravanski element) 

For a triangular element with identification of nodes at 
vertices, numbered as i, j, m, set in the xy coordinate system, 
in case of plane stress state /3, 4/, the vector displacement 
of nodes of the triangle is as follows, 

  (1) ( ){ } { }T
k i i j j m mu v u v u v 

Coordinates of the node elements are: 

 ( , ); ( , ); ( , )i i j j m mx y x y x y  (2) 

Displacements of any point inside the triangle as a linear 
combination of its coordinates and the displacement func-
tion can be expressed as, 

  (3) 1 2 3

4 5 6

u a a x a y

v a a x a y

  

  

A matrice form of these equations can be written as, 

 { } [ ]{ }f N a  (4) 

The displacement vector of any point inside the triangle is 

  (5) { }
u

f
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 
 

Now the matrix form [N] and vector of coefficients {a} are 
written as 
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Using Eq.(4) and the coordinates of nodes (2), we obtain 
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The vector of unknown coefficients {a} is then 

  (10)    1

( )( ) kk
a C 

  

On the basis of Eqs.(4), (9) and (10) the following matrix 
relations are obtained 

    ( )
, ,i j m k

f IN IN IN    (11) 

where f is the second order identity matrix and 
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The Δ is the triangle area obtained by determinant 
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Values of ar, br i cr are obtained through Eqs.(14), 
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Other users get a cyclical permutation of the index. 
Strains at any point within the triangle are obtained by 

partial derivatives of displacements according to  
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So by applying the partial differentiation of Eq.(11), we obtain 
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That is, 
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or      ( ) ( )
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Where the matrices [Br] are given in Eq.(19), 
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In order to realise the complete procedure with an analy-
sis of stress calculation of structure {}, it is necessary to 
present the basic equations for calculating the displacement 
{} on the basis of a known load {P} and structural stiff-
ness matrix [K], according to /1, 5, 6/. Therefore, the load 
connections and logical displacements established through 
the structural stiffness matrix [K], according to Eq.(20) 

        1
;P K K          P  (20) 

By applying Eqs.(17) and (18) it is clear that now we can 
obtain the strain {}, and then, with the introduction of the 
elasticity of the matrix material [ ]Q , we finally receive the 

stress, Eq.(21), 
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Finally we apply some of the strength criteria for 
evaluating the achieved limit, or critical stress, of composite 
structures (eg. Tsai-Hill criterion, based on the Mises crite-
rion, applied to each composite layer, TSH ≥ 1): 

 
2 22

2
TSH 1x y y xyx

X Y SX

               
     

  (22) 

where σx, σy, σxy – operating stress and X, Y, S – appropriate 
boundary strength, /1, 5/. 

However, it should be noted, the correct calculation for 
the structures necessarily means to transform the stress 
parameters from the global level (global coordinate system) 
into the local level (local coordinate system), and only then 
we obtain the current results of stress levels and reserves of 
the resistance.  

VERIFICATION  MODEL 

In case of a sample presented in Fig. 2a, and structural 
problem presented in Fig. 2b, the verification is based on 
theoretical relations from previous chapters. Values are 
calculated for a representative strain of triangle (namely the 
nodes 6, 7, 11) and a comparison to experimental results. A 
wider consideration of the validity of theoretical relation-
ships shall require the comparisons to be made on theoretical 
and experimental values for displacement nodes 2, 6, 7, 11. 

The special sample for performing the experiment, 
Fig. 2, consists of a thin composite plate with the laminate 
(+35°, –17°)s with an uni-directional carbon fibre CFC 108/ 
42%/G 808 and an epoxy matrix (Brochier). Mechanical 
characteristics of the base material are given in Table 1. 

The structural analysis of the calculated model, Fig. 2b, is 
made on the basis of already presented theoretical relations. 
Theoretical results for the problem of resistance of the com-
posite plate are obtained from our own software solutions, 

/4, 5/, and related to the displacement of all nodes and the 
mean strain discretized composite structures by the load P. 

(a)

 

(b)

 
Figure 2. Composite panel sample (a) and the corresponding 

model of discretized plate (b). 
Slika 2. Epruveta kompozitnog panela (a) i odgovarajući model 

diskretizovane ploče (b) 

Table 1. Material properties of CFC 108/42%/808 G  
Tabela 1. Osobine materijala CFC 108/42%/808 G  

E1 E2 12 21 G12 t 
GPa GPa – – GPa mm 

Data 

98.0 15.7 0.13 0.0208 4.5 0.22 
Real Real Calculated Calculated Catalogue Real 

Background 
values 

Experimental models, selection methods, techniques and 
tests of samples, planning experiments, determination of 
manufacturing errors, measuring and test equipment and the 
like, certainly are subjected to a special research. Therefore, 
this paper will only emphasize on the prediction of experi-
mental results for comparison with corresponding theoreti-
cal indicators, in accordance with the model-based analysis 
of composite plate structures. 

The sample shown in Fig. 2 is subjected to a maximal 
static tensile force of 7500 N on the measuring and test 
system, Fig. 3. Positions labelled 1 through 8 are character-
istic components of the measuring system and test sample. 

The maximal static load reaches a gradual increase in the 
intensity of discrete steps of 500 N (Tables contain entered 
data for increments of 1000 N) every 2 minutes, with the 
acquired process results in order to test the linear elasticity 
of the base composite material. 

Results of the measured size (displacement and dilation) 
are shown in Figs. 4-6 and in Table 2. 
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The diagram in Fig. 4 illustrates the dependence of total 
elongation in the x direction due to panel forces P, con-
firming linear elastic behaviour of composite materials. 

¤   - experimental 
       value 
__ - theoretical value 

   P    [kN]   
                                

 7.5                                                        ¤ 
                                                       ¤ 
                                              ¤ 
 5.0 
                                    ¤  
                               ¤ 
 2.5                    ¤                                                    
                      ¤                               
                 ¤                                 
 0.0                                            
        .0     .05     .10     .15     .20     .25   .283  

 Δl [mm]  

 
Figure 4. Functional dependency of force and displacement on the 

level of full model length. 
1. Composite sample of CFC cloth, 2. Strain gauges, 3. Pickup of 

displacement, 4. Six-channel measuring amplifier, 5. Universal testing 
machine, 6. Dynamometer, 7. Jaws,  8. Cables with connectors Slika 4. Funkcionalna zavisnost sile i pomeranja na nivou ukupne 

dužine modela Figure 3. Scheme of the measuring and testing system with parts. 
Slika 3. Shema mernog i sistema ispitivanja sa delovima 

Table 2. Experimental data. 
Tabela 2. Eksperimentalni podaci 

Strain and 
displacement x y xy = 2XY x2 x6 y6 x7 y7 x11 y11 

Load P (N) % % % -not measured mm mm mm mm mm mm mm 
1000 0.023 –0.019 – 0.012 0.021 –0.004 0.019 0.005 0.030 0.001 
2000 0.045 –0.035 – 0.025 0.039 –0.006 0.040 0.007 0.055 0.002 
3000 0.067 –0.060 – 0.030 0.059 –0.008 0.066 0.011 0.087 0.003 
4000 0.092 –0.078 – 0.037 0.075 –0.010 0.085 0.014 0.109 0.003 
5000 0.117 –0.105 – 0.046 0.093 –0.013 0.108 0.017 0.145 0.005 
6000 0.131 –0.122 – 0.057 0.112 –0.016 0.130 0.021 0.176 0.005 
7500 0.173 –0.140 – 0.069 0.137 –0.020 0.142 0.025 0.205 0.006 

 
The diagram in Fig. 5 depends on the node displacement 

characteristic of the force due to P. 
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Figure 6. Functional dependency P(x) and P(y). 

Slika 6. Funkcionalna zavisnost P(x) i P(y) 
Figure 5. Functional dependency P(x). 

If one knows the origin of the transverse displacement 
(practically known, is the result of longitudinal displace-
ments and relationships of mechanics in material structure), 
it could be possible to apply a hybrid model. Therefore, 
experimental data for longitudinal displacements remain the 
same as measured on the basis of experimental data and 
theoretical data for longitudinal and transverse displace-
ments, through proportional relationships, 

Slika 5. Funkcionalna zavisnost P(x) 

The diagram in Fig. 6 is given according to a representa-
tive of the triangle plate deformation due to the force P. 
Mean values for -faults and joints displacement ( = 1 – 
teor/exp;  = 1 – teor/exp) are given for the corresponding 
experimental values of parameters taken as exact. The theo-
retical results are in line with the above developed relation-
ships, /3, 4/. 
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 / /exp expteor teor
T L T Lf f f f  (23) 

can be adopted for further calculation of quasi-experimental 
data for transverse displacements that are normally hard to 
be correctly measured by contact methods, i.e. recording by 
comparators. Here, it is taken that the function f = , the  
Eq.(23). Specifically, the fibres are, as a rule, in well-bal-
anced structural composites, oriented approximately paral-
lel to the main axis (it is best to be exactly in the direction 
of the major axis), while a smaller number of fibres have 
transverse directions, at practically no particular impact on 
the behaviour of the group with the basic fibres in the longi 
tudinal direction (reflects in the relative Poisson ratio - 
VTL <<VLT). Theoretical and experimental corrected *yr 
data in accordance with Eq.(24) are given in Table 3. 

 .* /kv exp expteor teor
T TT L Lf f f f f    (24) 

If the relative error referring as, 

 1 /teor expf f    (25) 

including the relative error for the deformation  = 1 – 
teor/exp (i.e. * = 1 – exp*/exp), then one may receive the 
following approvals from the theoretical (and experimental 
values with correction) and the experimental results: 
– Theoretical results for x have the average deviation of 

14.5% compared to experimental results, and the results 
based on experimental values with correction have a devia-
tion of up to 27.2% compared to the experimental results. 

– Theoretical results for y have the average deviation of 
14.3% compared to experimental results, and the results 
based on experimental values deviate from the correction 
by 18.6% compared to experimental results. 

– Theoretical results for x have the average deviation of 
2.5 to 6.0 % compared to experimental results ( = 1 – 
teor/exp  and * = 1 – exp*/exp). 

– Theoretical results for y have the average deviation of 5 
to 16 % compared to experimental results, and results 
based on experimental values with the correction have a 
deviation of 10 to 20 % compared to experimental results. 

– Finally, it should be said, that the calculated deformation 
R–exp based on the measured displacement exp also differ 
from the measured strain exp, so here the error occurs at 
the level of 27.2% for x

R–exp, while the error y
R–exp 

amounts to 3.6%. So, it is obvious that different possible 
measurements could be given different errors that are 
caused by the use of different measurement techniques 
and instrumentation systems and test equipment. 

Presented grades and attitudes, just show at a glance the 
relative discrepancy of theory and experimental results. It 
should however be noted that in the calculation entered are 
catalogue values of mechanical properties (specifically the 
sliding module), which are certainly different from the real, 
and material defects, inevitably present, that occur during 
the curing of the structure /1, 2/. In fact, directly in line with 
/2/, and based on numerous examples from practice (in 
general published references), it seems safe to say that the 
correction factors for the mechanical characteristics of com-
posite materials, which are a consequence of specific imple-
mented structures, ranging from 1.2 to 1.4, depending on 
the type of composites, so the following observations can 
be considered to have the results within the limits of accep-
table, and therefore the sustainability of the respective 
theory of structural analysis of composite plates with linear 
elastic behaviour can be definitely confirmed. 

Table 3. Theoretical and experimental corrected *yr data in accordance with Eq.(24). 
Tabela 3. Teorijski i eksperimentalni korigovani *yr podaci prema izrazu (24) 

Strain and displacement x y xy = 2XY x6 *y6 x7 *y7 x11 *y11 
Load P = 7500 N % % % -not measured mm mm mm mm mm mm 
Theoretical value 0.148 –0.120 0.046 0.145 –0.019 0.151 0.021 0.225 0.007 

Experimental value (measured) 0.173 –0.140 – 0.137 –0.020 0.142 0.025 0.205 0.006 
Exp. value with correction* 0.126 –0.114 0.039 0.137 –0.018 0.142 0.020 0.205 0.005 

Calculated strain based on the 
exp. displacements 

0.126 –0.135 0.045 
      

 

STRESS ANALYSIS - A DEFECT IN COMPOSITES 

The proposed model comparisons of experimental and 
theoretical results for displacements and strains, in conjunc-
tion with the adopted theoretical calculation model, clearly 
can be used to identify defects in the composite (e.g. broken 
fibres, Fig. 7b), where for a model of intensity and strain 
distribution of a regular composite and the structure with 
broken fibres is given in graphical format. The illustration 
is itself a clear indicator of proportionality based on the 
absence of strain, according to the adopted theoretical model, 
making clear of the defects present in the composite (reduc-
tion and redistribution of stiffness and strength compared to 
the idealised model with possible manufacturing defects: 
de-lamination, broken fibres, nonhomogeneous material). 

In accordance with the analysed in /6/, it is evident that 
after curing the composite structure, there are residual stresses 

in the formed structure after cooling to ambient temperature 
levels. The line, which represents an increase of stress due 
to temperature rise during the curing process does not 
match the line of relaxation. 

There are so many different connections (in compounds) 
among fibres and matrix (where the fibres are practically 
inert, i.e. with low thermal coefficients, while the resin has 
thermal coefficients of significant values). The reasons are 
related to the specific disconnection of links which are bro-
ken due to the structural relaxation or due to composite de-
fects (due to connections that formed in the process of cu-
ring and the boundaries of adjacent parts, the nonhomoge-
neous zones in materials-composites, due to the presence of 
foreign substances or air, due to possible cracks in the mat-
rix, due to delamination of layers, fibre disorientation or 
broken fibres), so the process goes to the state with perma-
nent residual stresses in the composite after the treatment. 
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Figure 7. Model of composite materials with regular fibres (a), and 

broken fibres (b), in the direction of the base. 
Slika 7. Model kompozitnih materijala sa ispravnim vlaknima (a), 

i slomljenim vlaknima (b), u pravcu osnove 

In accordance with the diagram in Fig. 8, it is evident 
that after the curing, there are residual stresses in the struc-
ture after cooling the formed structure to the level of ambi-
ent temperature. The line which represents an increase of 
stress due to temperature rise during the curing process 
does not coincide with the line of relaxation. Therefore, the 
fibre expands a small amount, but the resin expands more 
with the rise in temperature or the reverse (it compresses) 
respectively with reducing temperature. In normal exploita-
tion conditions, composite components (fibres and resin) 
behave as linear elastic materials, where obviously an inter-
nal redistribution of stresses exists when acting as a system. 
At the macro-mechanical level, the composite is only rele-
vant, so that further consideration is reduced to the concept 
of the behaviour of homogeneous and generalised ortho-
tropic material. 

 
Figure 8. Dependence of correction factor,  (which reduces the 
characteristics of the composite) on the reserve of elasticity, U. 

Slika 8. Zavisnost korekcionog faktora,  (koji smanjuje karakte-
ristike kompozita) i rezerve elastičnosti, U

 These calculations appear in the initial crack in the 
lamella (mostly for cracks in the matrix) and can be set up, 
i.e. according to /4/, as follows: 
(a) Calculation of resistance of lamellae without taking into 
account the reserve of elasticity. When we have the crack in 
the matrix of a lamella it is necessary to adopt zero mechani-
cal properties of this layer except for the elasticity modulus 
in the longitudinal direction (direction of material symme-
try), which remains unchanged. The aim is to find such 
characteristics that lead to its full stress utilisation. In this 
way we can quickly get the selection of optimal orientation 
of reinforcement in the laminate system. 

 (b) Calculation of resistance of lamellae with a reserve of 
elasticity. Reserve of elasticity supposes, that because of 
cracks in the matrix, the transversal characteristics do not 
reach zero immediately, but gradually with increasing dila-
tion tend to zero, as shown in Fig. 8. 

With new values of E¹´ = E¹, E²´ = E², G¹²´ = G¹², 
we repeat the calculation for same purposes as under (a). 
The reserve of elasticity is estimated based on that how the 
stress level is allowed in the matrix after the appearance of 
a crack. Relevance assessment has appeared as a big prob-
lem, and this concept is necessary to lead very carefully, 
/4/. In this case, the experimental - and the logistics of 
experience are particularly important. 

CONCLUSION 

Based on the set of identical models for the calculation 
and experimental verification of theoretical results, the 
parameters are computed and then measured and compared 
for showing satisfactory agreement, thereby proving the 
viability of the level of accuracy of the applied theory. 

However, please note that apparently here a dispersion 
of the relatively high level in some of the results is present, 
and measured are primarily displacements in the inverse 
direction to the axis of loading. Accordingly, initial assess-
ments and views are expressed, at a first glance, the results 
had signalled the relative discrepancy of the theory and 
experiment. Anyhow, for the final assessment, it should be 
noted that this calculation is mostly based on the input of 
the catalogue values and calculations of some mechanical 
properties, which are certainly different then the real 
values, and that there are inevitably defects in the material 
structure, occurring during curing /2/ .  

Namely, in accordance with /2/, and based on practical 
examples, it seems to say that correction factors for the 
mechanical characteristics of composite materials are in the 
range of 1.2 to 1.4, depending on the type of composite. 

1 - extension 
 
2 - compression                 - 2 With the above mentioned considerations and tips, the 

results can be considered to be within acceptable limits, and 
this may confirm the theory of sustainability subjected for 
structural analysis of composite structures with linear elas-
tic behaviour. 

 
        1 -      
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