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Abstract 

Transition theory has been used to derive the elastic-
plastic and transitional stresses. Results obtained have been 
discussed numerically and depicted graphically. It is ob-
served that the rotating disc made of incompressible mate-
rial with inclusion requires higher angular speed to yield at 
the internal surface as compared to the disc made of com-
pressible material. It is seen that the radial and circum-
ferential stresses are maximum at the internal surface with 
and without edge load (for flat disc). With the increase in 
thickness parameter (k = 2, 4), the circumferential stress is 
maximum at the external surface while the radial stress is 
maximum at the internal surface. From the figures drawn 
the disc with exponentially varying thickness (k = 2), a high 
angular speed is required for initial yielding at the internal 
surface as compared to flat disc and exponentially varying 
thickness for k = 4 onwards. It is concluded that the disk 
made of isotropic compressible material is on the safer side 
of the design as compared to disk of isotropic incompressi-
ble material as it requires higher increase in an angular 
speed to become fully plastic from its initial yielding. 

Ključne reči 
• elastičnost 
• plastičnost 
• stišljivost 
• prelazni naponi 
• izotropnost 
• rotirajući disk 

Izvod 

Primenjena je teorija prelaznog naponskog stanja za 
izračunavanje elastoplastičnih i prelaznih napona. Dobijeni 
rezultati su diskutovani i analizirani numerički i grafički. 
Primećuje se da rotirajući disk od nestišljivog materijala sa 
uključkom zahteva veću ugaonu brzinu za tečenje na unu-
trašnjoj površini, u poređenju sa diskom od stišljivog mate-
rijala. Uočeno je da su radijalni i obimni naponi maksimalni 
na unutrašnjoj površini, sa ili bez ivičnog opterećenja (za 
ravan disk). Sa porastom parametra debljine (k = 2, 4), 
obimni napon je najveći na spoljnoj površini, dok je radi-
jalni napon najveći na unutrašnjoj površini. Sa prikazanih 
dijagrama, kod diska sa eksponencijalnom promenom deb-
ljine (k = 2) se zahteva veća ugaona brzina za početak teče-
nja na unutrašnjoj površini, u poređenju sa ravnim diskom i 
eksponencijalnom promenom debljine za k = 4 i više. 
Zaključuje se da je disk od izotropnog stišljivog materijala 
sigurniji pri projektovanju u poređenju sa diskom od izotrop-
nog nestišljivog materijala, jer zahteva veći porast ugaone 
brzine da bi postigao potpunu plastičnost od početka pojave 
tečenja. 

INTRODUCTION 

This paper is concerned with the analysis of a rotating 
disk made of isotropic material with exponentially varying 
thickness. There are many applications of such type of 
rotating disks, as in turbines, rotors, flywheels and with the 
advent of computers, disk drives. The use of rotating disk in 
machinery and structural applications has generated consid-
erable interest in many problems in the domain of solid 
mechanics. The analysis of stress distribution in a circular 
disk rotating at a high speed is important for a better 
understanding of the behaviour and optimum design of 
structures. The analysis of a thin rotating discs of isotropic 
material is discussed extensively by Timoshenko and 
Goodier, /1/. In the classical theory, solutions for such type 
of discs of isotropic material can be found in most of stan-
dard textbooks, /1-5/. Chakrabarty, /2/, and Heyman, /6/, 
solved the problem for the plastic state by utilizing the solu-

tion in the elastic range and considering the plastic state 
with the help of Tresca’s, Von-Mises or any other classical 
yield condition. Han, /7/, has investigated elastic and plastic 
stresses for isotropic materials with a variable thickness. 
Eraslan, /8/, has calculated elastic and plastic stresses having 
variable thickness using Tresca’s yield criterion, its associ-
ated flow rule and linear strain hardening. Wang, /9/, has 
investigated the deformation of elastic half rings. 

Transition is a natural phenomenon and there is hardly 
any branch of science or technology in which we do not 
come across transition from one state to another. At transi-
tion, the fundamental structure of the medium undergoes a 
change. The particles constituting a medium rearrange them-
selves and give rise to spin, rotation, vorticity and other 
non-linear effects. This suggests that at transition, non-linear 
terms are very important and neglection of which may not 
represent the real physical phenomenon. Therefore transi-
tion fields are non-linear, non-conservative and irreversible 
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in nature. Elasticity-plasticity, visco-elastic, creep, fatigue, 
relaxation are some examples of transition in which non-
linear terms are very important. At present, such problems 
as elastic-plastic, creep and fatigue are treated by assuming 
ad-hoc, semi-empirical laws with the result that discontinui-
ties, singular surfaces, non-differentiable regions have to be 
introduced over which two successive states of a medium 
are matched together. In a series of papers, Seth (1962-64) 
has given an entirely different orientation to this interesting 
problem of transition. He has developed a new ‘transition 
theory’ /10-12/ of elastic-plastic and creep deformation. 
The transition theory utilizes the concept of generalized 
principal strain measure and asymptotic solution at critical 
points or turning points of the differential system, defining 
the deformed field and has been successfully applied to a 
large number of problems, /13-19/. The generalized princi-
pal strain measure, /19/, is defined as, 
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where n is the measure and eij
A are the principal Almansi 

finite strain components. For n = –2, –1, 0, 1, 2 it gives 
Cauchy, Green, Hencky, Swainger and Almansi measures 
respectively. 

Here, an attempt is made to study the behaviour of an 
isotropic thin rotating disk with exponentially variable thick-
ness and edge load using transition theory, /10/. The thick-
ness of the disc is assumed to vary along the radius in the form 

 0

k
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where h0 is the constant thickness at the axis, k is the geo-
metric parameter and b is the radius of the disk. 

Objective of the present study 

In order to explain the elastic-plastic deformation, it is 
first necessary to recognise the transition state as an asymp-
totic one and in this work; the major aim to eliminate the 
need for assuming semi-empirical laws, yield condition. 
The constitutive equation corresponding to the transition 
state is also obtained. 

Borah, /16/, identified the transition state in which the 
governing differential equation shows some criticality. The 
general yield condition of transition is identified from the 
vanishing of Jacobian of transformation, (X,Y,Z)/(x,y,z) = 0, 
where (X,Y,Z), (x,y,z) are the coordinates of a point in the 
undeformed and deformed state, respectively. 

GOVERNING EQUATIONS 

We consider a thin disk of constant density with central 
bore of radius ‘a’ and external radius ‘b’. The disc is rotat-
ing with angular speed ‘’ about an axis perpendicular to 
its plane, passing through its centre. A case of plane stress 
is taken in which the axial stress Tzz is zero. The disk is 
assumed to be symmetric with respect to the mid plane. 

The displacement components in cylindrical polar coor-
dinates are given by /11/. 
 (1 ); 0;u r v w dz     (2) 

where  is a function of 2 2r x y  only and d is a con-

stant. The finite strain components are given as, 
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On substitution of Eq.(3) in (1), the generalised compo-
nents of strain are given as 
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The stress-strain relations for isotropic material are given as, 
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where Tij and eij are the stress and strain components respec-
tively,  and  are the Lame’s constants, Ik = ekk is the first 
strain invariant and ij is the Kronecker’s delta. 

Eq.(5) for this problem becomes 
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Substituting Eq.(3) in (5), the strain components in terms 
of stresses are obtained as 
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where E is the Young’s modulus and C is the compressibil-
ity factor of the material. In terms of Lame’s constant they 

are given as 
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Substituting Eq.(4) in (6), we get the stresses as 
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Equations of equilibrium are all satisfied except 

   2 2 0rr
d
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dr       (9) 

where  is density of material and h is the exponentially 
variable thickness of the disc. Using Eq.(8) in (9), we get a 
non-linear differential equation in  as 
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The edge load is attached at the boundary (i.e. at r = b), 
and because of inclusion the displacement is zero at the 
inner surface. 

SOLUTION THROUGH THE PRINCIPAL STRESS 

It is shown /13-19/ that the asymptotic solution through 
the principal stress leads from elastic to plastic state at the 
transition point , we define the transition function R as /19/ 
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Taking the logarithmic differentiation of Eq.(12) with 
respect to r and using Eq.(10), we get where r' = P (P is a function of , and  is a function of 

r). Transition or turning points of P in Eq.(10) are P  –1 
and P   . The boundary conditions are: 
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Taking the asymptotic value of Eq.(13) as P    and 
integrating, we get 
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Substituting the values of constants of integration A1 and B1 
from Eq.(19) in Eqs.(15), (16) and (18) respectively, we get 
the transitional stresses and displacement as 
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Substituting Eqs.(15) and (16) in second Eq.(7), we get 
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Substituting Eq.(17) in (2), we get 
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From Eqs.(20) and (21), we get 
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FULLY PLASTIC STATE 

The disc becomes fully plastic (C  0) at the external 
surface (i.e. at r = b) and Eq.(23) become 
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The angular speed required for the disc to become fully 
plastic is given by 
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We introduce the following non-dimensional components as 
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Transitional stresses, angular speed and displacement can 
be obtained from Eqs.(20)-(22) and (24) in non-dimen-
sional form as, 
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Stresses, displacement and angular speed for fully-plastic 
state (C  0) are obtained from Eqs.(26)-(28) and (25) as 
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NUMERICAL ILLUSTRATION AND DISCUSSION 

In Fig. 1, curves are drawn between angular speed (i
2) 

and various radii ratios R0 = (a/b) for different compressi-
bility factors (C = 0, 0.25, 0.5, 0.75) and variable thickness 
(k = 0, 2, 4). It is observed that the rotating disc of incom-
pressible material with an inclusion requires higher angular 
speed to yield at the internal surface as compared to the disc 
made of compressible material, and this behaviour remains 
the same with increase in edge load (T0 = 0.1, 0.2). With the 
increase in edge load, the angular speed required for initial 
yielding decreases. From Table 1, it is seen that for isotropic 
compressible material, high percentage increase in angular 
speed is required to become fully plastic, as compared to 
rotating disk of incompressible material. In Figs. 2-5, 
curves are drawn between transitional stresses, displace-
ment against the radii ratio. The parameters in Figs. 2-5 are: 
radii ratio (R = r/b), compressibility (C = 0, 0.25, 0.5, 0.75), 
variable thickness (K = 0, 2, 4), and edge load (T0 = 0, 0.1, 
0.2). The fully plastic stresses for various radii ratio (R = 
r/b) are shown in Fig. 6. From Fig. 6, it is observed that 
radial and circumferential stresses are maximal at the inter-
nal surface (for flat disc i.e. k = 0). With increase of thick-
ness parameter (k = 2, 4), the circumferential stress is maxi-
mum at the external surface. With edge load, the behaviour 
remains the same. Similar graph is also obtained by Güven, 
/20/, for a rotating disc with a rigid inclusion. 

CONCLUSION 

It can be concluded that the disc made of isotropic com-
pressible material is on the safer side of the design as 
compared to incompressible material, as it requires a higher 
percentage increase to become fully plastic from the initial 
yielding. 
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Table 1. Angular speed required for initial yielding and fully plastic state with different edge loading (flat disc). 
Tabela 1. Ugaona brzina za početak tečenja i stanja potpune plastičnosti sa različitim ivičnim opterećenjem (ravan disk) 

T0 = 0  T0 = 0.1 T0 = 0.2   
C i

2 f
2 

Percentage increase 
in angular speed i

2 f
2 

Percentage increase 
in angular speed i

2 f
2 

Percentage increase 
in angular speed 

0 4.84 6.86 41.421 4.5059 6.5143 44.573 4.163 6.17 48.244 
0.25 4.04 6.86 69.828 3.6948 6.5143 76.308 3.352 6.17 84.112 
0.5 3.24 6.86 111.65 2.8969 6.5143 124.87 2.5541 6.17 141.63 R

0 
=

 0
.5

 

0.75 2.46 6.86 178.58 2.1186 6.5143 207.48 1.7758 6.17 247.53 
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Deformation in a thin rotating disc having variable thickness and  Deformacija tankog rotirajućeg diska promenljive debljine i 
 

  
Figure 1. Angular speed for initial yielding at internal surface of 

rotating disc of variable thickness and edge loading. 
Figure 2. Transitional stresses and displacement of thin rotating disc 

along radii ratio and C = 0, for thickness and edge load. 
Slika 1. Ugaona brzina za početak tečenja na unutrašnjoj površini 

rotirajućeg diska promenljive debljine i ivičnim opterećenjem 
Slika 2. Prelazni naponi i pomeranje za tanki rotirajući disk duž odnosa 

poluprečnika i C = 0, sa debljinom i ivičnim opterećenjem 

  
Figure 3. Transitional stresses and displacement in a thin rotating disc 
along radii ratio with C = 0.25 for variable thickness and edge load.

Figure 4. Transitional stresses and displacement in a thin rotating disc 
along radii ratio with C = 0.5 for variable thickness and edge load. 

Slika 3. Prelazni naponi i pomeranje za tanki rotirajući disk duž odnosa 
poluprečnika i C = 0.25, sa debljinom i ivičnim opterećenjem 

Slika 4. Prelazni naponi i pomeranje za tanki rotirajući disk duž odnosa 
poluprečnika i C = 0.5, sa debljinom i ivičnim opterećenjem 
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Figure 5. Transitional stresses and displacement in a thin rotating disc 
along radii ratio with C = 0.75 for variable thickness and edge load.

Figure 6. Transitional stresses and displacement in a thin rotating 
disc along radii ratio for variable thickness and edge load. 

Slika 5. Prelazni naponi i pomeranje za tanki rotirajući disk duž odnosa 
poluprečnika i C = 0.75, sa debljinom i ivičnim opterećenjem 

Slika 6. Prelazni naponi i pomeranje za tanki rotirajući disk duž 
odnosa poluprečnika sa debljinom i ivičnim opterećenjem 
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