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Abstract 

This paper presents a method of studying resonance 
phenomenon of hydrogen-natural gas mixtures flows in 
pipelines. To simulate the resonance phenomenon, an oscil-
latory pressure at the upstream end of the pipe is consid-
ered while the downstream end is kept closed. The oscilla-
tion frequency is taken as a multiple of the fundamental 
frequency of the system. The Governing equations for such 
problem are two coupled, non-linear, hyperbolic, partial 
differential equations. The fluid pressure and velocity are 
considered as two principal dependent variables. The fluid 
is a homogeneous hydrogen-natural gas mixture for which 
the density is defined by an expression averaging the two 
gas densities where an isentropic process is admitted for 
the two components. The hydrogen-mixture mass ratio (or 
quality), assumed to be constant is used in the mathemati-
cal formulation, instead of the void fraction which varies 
with pressure. The problem has been solved by the non-
linear method of characteristics. The obtained results show 
that the pressure evolution is well influenced by the excita-
tion frequencies and it builds up to a steady-oscillatory 
behaviour (unless failure occurs). Shock waves with reso-
nant frequency and antiresonant frequencies are numeri-
cally obtained and the influence of different hydrogen mass 
fractions in the hydrogen-natural mixtures and diameters of 
the pipe are also analysed. Furthermore, dissolution and 
permeation evolutions as functions of time, of hydrogen and 
mixtures, are plotted. These plots have shown too, the 
influence of the excitation frequencies on the dissolution 
and permeation rate. 

 
 

Ključne reči 
• mešavine vodonik-prirodni gas 
• fenomen rezonance 
• metoda karakteristika 
• cevovodi prirodnog gasa 

Izvod 

U ovom radu je predstavljena metoda proučavanja feno-
mena rezonance protoka mešavina vodonik-prirodni gas u 
cevovodima. Radi simulacije fenomena rezonance, razma-
tra se oscilatorna promena pritiska na uzvodnom kraju 
cevovoda dok je nizvodni kraj zatvoren. Frekvencija oscila-
cija je uzeta kao deo osnovne frekvencije sistema. Jednači-
ne koje definišu ovaj problem su dve spregnute, nelinearne, 
hiperboličke, parcijalne diferencijalne jednačine. Pritisak i 
brzina fluida se smatraju za dve glavne zavisno promenljive 
sistema. Fluid je homogena mešavina vodonika-prirodnog 
gasa sa gustinom definisanom izrazom za usrednjavanje 
dve gustine gasova, gde se dopušta izentropski proces za 
ove dve komponente. Maseni udeo vodonik-mešavina (ili 
kvalitet), koji se smatra konstantnim, uzima se u matematič-
koj formulaciji, umesto udela šupljina koji se menja sa 
pritiskom. Problem je rešen primenom nelinearne metode 
karakteristika. Dobijeni rezultati pokazuju da na razvoj 
pritiska u velikoj meri utiču pobudne frekvencije, a koji 
poprima ravnotežno-oscilatorno ponašanje (ukoliko se ne 
pojavi lom). Udarni talasi sa rezonantnim i antirezonant-
nim frekvencijama se dobijaju numerički, a uticaji različitih 
masenih udela vodonika u mešavinama vodonik-prirodni 
gas sa prečnicima cevovoda su takođe analizirani. Dati su i 
dijagrami promene rastvaranja i zasićenja u funkciji vreme-
na za vodonik i mešavine. Ovi dijagrami takođe pokazuju 
uticaj pobudnih frekvencija na brzinu rastvaranja i zasiće-
nja. 
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INTRODUCTION 

Hydrogen is considered a promising future fuel for 
vehicles. The absence of hydrogen infrastructure is seen as 
a major obstacle to the introduction of hydrogen fuel cell 
vehicles. Actually, during the transition period towards a 
full development of hydrogen market, the use of the exist-
ing natural gas network to transport hydrogen or hydrogen-
natural gas mixtures from the production site to the storage 
areas or from the storage areas to the dispensers seems to be 
a good economic solution. 

The durability and the mechanical resistance of the exist-
ing pipelines have been investigated for natural gas only, 
taking into account the pressure evolution during the 
permanent regime, the transient regime and resonance con-
ditions coming from periodic excitations. Sources of peri-
odic excitations such as pumps and compressors can induce 
heavy resonances in a lightly damped system /1/. The need 
to analyse vibrations of compressible fluids in piping 
systems arises in a variety of practical situations. 

The resonance phenomenon is well studied for com-
pressible fluids and mainly for natural gas. In many 
researches, resonance phenomenon in pipelines is simulated 
by considering a gas-filled tube driven by an oscillating 
plane piston at one end in the neighbourhood of the funda-
mental resonant frequency of the gas column. Periodic 
shock waves can be found travelling back and forth along 
the tube with a frequency equalled to that of the oscillating 
piston and velocity close to that of sound /2, 3/. Alexeev 
and Gutfinger /3/ investigated the two-dimensional turbu-
lent gas oscillations and acoustic streaming in resonant tubes 
with a finite-difference algorithm supplemented by a two-
equation Wilcox turbulent model, and found that the direc-
tion of gas streaming at resonance is opposite to that in non-
resonant oscillations. Tang and Cheng /4/ solved the two-
dimensional gas resonant oscillation in a cylindrical tube by 
a new finite volume method with second-order kinetic flux-
vector splitting scheme for convective terms, and a third-
order Runge-Kutta method for the time evolution. They 
claimed that their numerical results are similar to those 
from previous studies. 

More recently, research has been performed to study gas 
resonant oscillations in a two-dimensional closed tube using 
the lattice Boltzmann method /5/. 

As the thermodynamic properties of hydrogen differ sig-
nificantly from those of natural gas, the pressure evolution 
of hydrogen or hydrogen-natural gas mixtures during the 
resonant frequencies will not be the same. Unfortunately, 
the resonant phenomenon in hydrogen-natural gas mixtures 
has not been studied. 

This paper presents a method of studying resonance 
phenomenon of hydrogen-natural gas mixtures flows in 
pipelines. To simulate this problem, an oscillatory pressure 
is considered at the upstream end of the pipe while the 
downstream end is kept closed. The oscillation frequency is 
considered as a multiple of the fundamental or natural 
frequency of the system. The governing equations for such 
problem are two coupled, non linear, hyperbolic, partial 
differential equations. The numerical simulation was per-
formed by the use of the characteristics irregular grid 

method. In this paper we study the influence of different 
hydrogen mass fractions in the hydrogen-natural mixtures 
and different diameters of the pipe on the pressure 
evolution. Furthermore, dissolution and permeation evolu-
tions as functions of time, of hydrogen and mixtures, are 
examined. 

ASSUMPTION 

The mathematical model considers the following assump-
tions: the flow is compressible and includes rapid tran-
sients; variations in potential energy may be ignored; the 
viscous effects are modelled by considering the pipeline-
wall shear stress. The calculation of the pressure loss is 
done by analogy with the permanent flows. 

The transient flow is supposed one-dimensional and 
concerns a homogeneous fluid mixture of hydrogen and 
natural gas. The hydrogen-fluid mass ratio (or the quality) 
is noted  = [Mh/(Mg + Mh)] where Mh and Mg represent the 
masses of hydrogen and natural gas respectively. The density 
of hydrogen and natural gas evolve according to the follow-
ing isentropic laws: 
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where ho is the density of hydrogen at the initial condi-
tions, go is the density of natural gas at the initial condi-
tions, p0 is the permanent regime pressure and p is the pres-
sure of the transient regime. 

The pipe is supposed to be rigid, that means that the 
section A of the pipe is constant: 
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where D is the diameter of the pipe. 

MATHEMATICAL FORMULATION 

Equation of motion 

By application of the mass conservation and momentum 
laws to an element of fluid between two sections of the pipe 
of abscissa x and x + dx, we get the following equations of 
continuity and motion /6/: 
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where  is the coefficient of friction and V the velocity of 
the mixture. 

Equations (4) and (5) form a system of two non-linear 
partial differential equations of hyperbolic type in which 
the pressure p and the velocity V are considered the main 
variables of the flow. To solve numerically these equations, 
we must express the density of the mixture  according to 
the fluid pressure. 
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Expression of the mixture density 

The expression of the average density of the mixture is 
defined according to the hydrogen mass ratio  /7/: 
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Expression of the celerity of pressure waves 

For a compressible fluid, the celerity of the pressure 
waves can be defined by the expression: 
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Taking into account relation (6), we obtain: 
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Expression of the hydrogen permeation and dissolution 

By the application of Sivert’s laws, the permeation and 
dissolution of hydrogen are given by the following equa-
tions respectively /8/: 
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where HS = Q is the dissolution enthalpy (J), R is the 
universal gas constant (J°K–1mol–1), p is the pressure (atm 
or in bar), T is the temperature (°K) and Hm is the free 
migration enthalpy. 

NUMERICAL SOLUTION BY METHOD OF CHARAC-
TERISTICS 

The method of characteristics /9/ is often used to trans-
form the governing partial differential equations into a 
system of ordinary differential equations that are valid 
along two sets of characteristic lines, Fig. 1. The ordinary 
differential equations, of (4) and (5), obtained by this 
method are: 
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where J = V|V|/2D represents the pressure loss by unit of 
pipe length. 

The + is for the waves coming from the upstream end 
while the – is for waves coming from the downstream end. 

These equations can also be written under the following 
form: 
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Equations (13) determine the evolution of pressure and 
velocity according to time and space. They are much appro-
priated to be solved numerically on a microcomputer. The 
obtained solution constitutes a solution to the original system 
of (4) and (5). The transient flow is generated by a discon-
tinuity of the initial steady state flow due to a rapid valve 
closure. This discontinuity propagates itself and the displace-
ment is presented in the plane (x, t) by characteristic lines. 
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Figure 1. Characteristics lines. 
Slika 1. Karakteristične krive. 

Unknown values of (V, p, x, t), at any point P, as shown 
in Fig. 1, can be determined by knowing their values at 
points R and S lying on the two characteristics passing 
through P and by integrating the two simultaneous Eqs. 
(11) and (12). These equations can be written for the two 
signs, which results in four finite difference equations: 
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As the characteristics are curved on the (x, t) plane due 
to the non-linearity of (4) and (5), the integration is achieved 
by means of an iterative trapezoidal rule. Consequently, we 
obtain the unknown values tP, xP, VP and pP at point P: 
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where: FR = (V + C)R, GS = (V – C)S, MR,S = (1/C)R,S, HR,S = 
–JR,S for k = 1 and 
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1
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In this study, the iteration number is limited to j = 20. 
The determination of the solution in the two extreme sections 
imposes the introduction of appropriate boundary conditions. 

APPLICATION AND RESULTS 

To illustrate the resonance phenomenon of high-pressure 
hydrogen-natural gas mixtures in pipelines, an oscillatory 
pressure p = p0 + psin(t) is considered at the upstream 
end of the pipe (x = 0), and reflected by the other closed 
end (x = L), Fig. 2. As initial condition, we assume a static 
temperature T = 15°C and an absolute pressure p0 = 70 bar. 

      
Figure 2. Installation of the resonant pipe. 
Slika 2. Instalacija rezonantnog cevovoda. 

In this study the pressure gradient p = 5 bar. The total 
length of the pipe is 500 m and its diameter is 0.4 m. The 
properties of hydrogen and natural gas in working condi-
tions (p = 70 bar, T = 15°C) used in calculations are pre-
sented in Tables 1 and 2, respectively. 

Table 1. Hydrogen properties. 
Tabela 1. Osobine vodonika 

Symbol Designation Value Unit 
Cp Specific heat at constant pressure 14600 J/(kg°K)
Cv Specific heat at constant volume 10440 J/(kg°K)
R gas constant 4160 J/(kg°K)

Table 2. Natural gas properties. 
Tabela 2. Osobine prirodnog gasa 

Symbol Designation Value Unit 
Cp Specific heat at constant pressure 1497.5 J/(kg°K)
Cv Specific heat at constant volume 1056.8 J/(kg°K)
R gas constant 440.7 J/(kg°K)

The oscillation period is given by the following equation: 

 
4L

T
C
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By use of (22), the fundamental resonant frequency of 
the pipe is: 
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Figure 3 shows plots of numerically obtained results for 
pressure evolution, as a function of time, at the downstream 
end of the pipe and for different values of hydrogen mass 
ratio . These plots are considered for two harmonic fre-
quencies which are multiples of the natural or fundamental 

frequency : an odd frequency  =  and an even fre-
quency  = 2. 

Numerical results clearly show that resonance phenome-
non is obtained for odd harmonics. As a consequence, the 
pressure evolution obtained by frequency  =  is much 
important than that obtained by even harmonic  = 2. 
This latter is close to the antiresonant frequency, and the 
pressure is almost neutralised as can be noted in Fig. 3. 
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Figure 3. Pressure evolution for frequencies  =  and  = 2 at 

closed valve side, for different values of . 
Slika 3. Razvoj pritiska za frekvencije  =  i  = 2 na strani 

zatvorenog ventila, za različite vrednosti .

Figure 3 shows too, the influence of different hydrogen 
mass fraction on pressure oscillations. In fact, the number 
of oscillations for hydrogen and hydrogen-natural gas 
mixtures is higher compared to that for natural gas. This 
result is due to the celerity of waves which is higher in the 
case of hydrogen and hydrogen-natural mixtures than that 
in the case of natural gas. In this case, hydrogen waves will 
propagate more rapidly than those of natural gas. As a 
result, for the same time interval, the number of pressure 
oscillations in the case of hydrogen is three times bigger 
than that in the case of natural gas as mentioned in Fig. 3. 
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Figures 4 and 5 show a comparison of the numerically 
obtained plots for pressure distribution considered for odd 
and even frequencies, respectively. These plots are at the 
downstream end of the pipe and for hydrogen mass fraction 
 = 1. Numerical results show again that the resonance 
phenomenon is obtained for odd harmonics as shown in 
Fig. 4. 
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Figure 4. Pressure evolution for odd frequencies at downstream 

end of pipe, for  = 1. 
Slika 4. Razvoj pritiska za neparne frekvencije u nizvodnoj strani 

cevi, za  = 1 

This figure shows that resonance obtained by first har-
monic frequency  =  represent certain stability and the 
amplitude of pressure oscillations are the same. However, 
for frequencies  = 3 and  = 5 the minimum the 
maximum pick values of pressure oscillations represent a 
certain irregularity. It can be noted that for frequency  = 
3 the maximum pressure picks vary between the values of 
88 bar and 90 bar and the time interval which separates 
these two values is about 16 s. For the frequency  = 5, 
the maximum pressure picks vary between values of 86 and 
90 bar and the time interval which separates these two 

values is about 6 s. Figure 5 shows the antiresonance pheno-
menon obtained by even frequencies. It can be noted that 
for the different even frequencies, the amplitude of pressure 
oscillations is largely reduced if compared to those 
provoked by odd or resonant frequencies. Nevertheless, for 
certain even frequencies, the maximum of the pressure 
picks is significant. It can be seen that for  = 2 the 
maximum pick of pressure oscillations is 80 bar, it reaches 
86 bar for  = 4 and 88 bar for  = 6. These distur-
bances mainly seen for the antiresonant frequencies and 
cause excessive pressure growth are due to nonlinearity of 
the problem. This nonlinearity is due to the celerity of 
waves which depends on pressure. As a consequence, the 
determination of the exact value of natural frequency, given 
by Eq. (23), is difficult to obtain. In general for compressi-
ble fluids, the determination of exact values of resonant and 
antiresonant frequencies needs a meticulous research. One 
technique /5/, among many others, uses a frequency range 
in the neighbourhood of the theoretical resonant or antireso-
nant frequency and calculates by numerical approaches the  
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Figure 5. Pressure evolution for even frequencies at downstream 
end of pipe, for  = 1. 

Slika 5. Razvoj pritiska za parne frekvencije u nizvodnoj strani 
cevi, za  = 1
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best result. In fact, Fig. 6 shows the pressure oscillations by 
considering a frequency range in the neighbourhood of the 
antiresonant frequency  = 2 and for hydrogen mass frac-
tion  = 0 and  =1. 
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Figure 6. Pressure evolution in the neighbourhood of  = 2 at 

the downstream end of pipe, for hydrogen mass fraction  = 0 and 1. 
Slika 6. Razvoj pritiska u okolini  = 2 na nizvodnoj strani cevi, 

za maseni udeo vodonika   = 0 i 1. 

It may be seen from Fig. 6, for  = 0 and for the time 
interval 0  t  75, that amplitudes of pressure oscillations 
have a certain similarity for all frequencies considered in 
the neighbourhood of  = 2. However, for the time 
interval 75 < t  120 the behaviour of pressure oscillations, 
for these frequencies, has been changed. It can be noted that 
for frequencies  = 1.98 and  = 1.99 the pressure 
oscillations are above the initial pressure p0. For 
frequencies  = 2 and  = 2.01the pressure oscillations 
are under initial pressure p0. For frequency  = 2.005 the 
amplitude of the pressure oscillations has been practically 
neutralized and stabilizes close to initial pressure p0. It can 
be deduced then, that the frequency that gives an ideal 
antiresonant phenomenon belongs to the interval ]2, 
2.005[ instead of  = 2. It can be noted, from Fig. 6, 
that, for  = 1, the behaviour of pressure oscillations is 
almost the same than those in the case of  = 0. However, 
the two time intervals in the case of  = 1 became 0  t  25 
and 25  t  40. In the first time interval and for all the 
considered frequencies, the pressure oscillations are almost 
the same. Nevertheless, in the time interval 25  t  40 the 
same behaviour of pressure oscillations is observed as in 
the case of  = 0. 

It is important to comment the similar behaviour of pres-
sure oscillations in the case of natural gas and in the case of 
hydrogen. But, this similarity is obtained for two different 
time intervals: 0  t  120 in case of natural gas ( = 0) and 
0  t  40 in case of hydrogen ( = 1). It can be noted that 
the time interval in case of hydrogen is three times bigger 
than that in case of natural gas. Moreover, the celerity of 
waves in case of hydrogen (C = 1252 m/s) is almost three 
times faster than that in case of natural gas (C = 410 m/s). 

From Eq. (22), it can be deduced that the oscillation period 
in case of hydrogen is three times smaller than that in case 
of natural gas. Then, one can state that the similarity in case 
of hydrogen and natural gas requires the same number of 
oscillations. Since the oscillation period in case of hydrogen 
is three times smaller than that of natural gas, and in order 
to have the same number of oscillations, the time interval in 
case of natural gas should be three times bigger than that of 
hydrogen as shown in Fig. 6. 

Figure 7 shows plots of numerically obtained results for 
pressure distribution as a function of time, at the down-
stream end of pipe, for different diameters of the pipe and 
for hydrogen mass fraction  = 1. Figure 7 clearly shows 
the influence of pipe diameter on the amplitude of the pres-
sure oscillations. It can be noted that, the maximum pres-
sure is 92 bar for the diameter 0.4 m while it reaches 
107 bar for the pipe having 1 m in diameter. 
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Figure 7. Pressure evolution for different pipe diameter at 

downstream end of pipe and for hydrogen mass fraction  = 1. 
Slika 7. Razvoj pritiska za različite prečnike cevi na nizvodnom 

delu cevi za maseni udeo vodonika  = 1 
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Figure 8. Solubility evolution in case of hydrogen ( = 1), for 

frequencies  =  and  = 2, for  and  steels. 
Slika 8. Razvoj rastvorljivosti za slučaj vodonika ( = 1), za 

frekvencije  =  i  = 2, za  i  čelike 
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Figures 8 and 9 show plots of numerically obtained results 
for solubility and permeability evolutions, as functions of 
time and in the case of hydrogen ( = 1), respectively. 
These plots are considered for two harmonic frequencies 
 =  and  = 2 and for  and  steels. It can be noted 
that the solubility and permeability evolution follow the 
same oscillatory behaviour of the pressure in cases of reso-
nant and antiresonant frequencies. From Fig. 8, it can be 
seen that the evolution of the solubility is much important 
in the case of  steel than that in the case of  steel. 
However, the permeability evolution is much significant in 
the case of  steel than that in the case of  steel as shown 
in Fig. 9. Nevertheless, these two complementary parame-
ters are important in the embrittlement mechanism by 
hydrogen and they should be controlled in the case of  and 
 steels during resonance phenomena. 
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Figure 9. Permeability evolution in case of hydrogen ( = 1), for 

frequencies  =  and  = 2, for  and  steels. 
Slika 9. Razvoj zasićenja za slučaj vodonika ( = 1), za 

frekvencije  =  i  = 2, za  i  čelike 

From Fig. 3 and since the solubility and permeability 
depend on pressure, the following can be deduced: first, the 
pick values of these two parameters in case of hydrogen-
natural mixtures will be the same than those obtained in the 
case of hydrogen; secondly, the solubility and permeability 
evolution, in case of hydrogen-natural mixtures, will follow 
the same oscillatory behaviour of pressure in cases of 
resonant and antiresonant frequencies as shown in Fig. 3. 

CONCLUSION 

In this study, the numerical solution of the resonant 
phenomenon in rigid pipelines of hydrogen-natural gas 
mixtures has been presented. This problem is governed by 
coupled two linear partial differential equations of hyper-

bolic type. The numerical method employed is the method 
of characteristics. 

To simulate the resonance phenomenon, the boundary 
conditions were imposed by considering an oscillatory pres-
sure at the upstream end of the pipe while the downstream 
end is kept closed. 

Numerical results have shown that resonance is obtained 
for odd harmonics and antiresonance is obtained for even 
harmonics. During resonance, the results show that the 
pressure evolution is well influenced by excitation frequen-
cies and it builds up to a steady-oscillatory behaviour (unless 
failure occurs). The effect of different values of hydrogen 
mass fractions  on the pressure oscillations has also been 
analysed. The obtained results show that pressure oscilla-
tions for hydrogen and hydrogen-natural gas mixtures are 
higher compared to those obtained in the case of natural 
gas. Also, due to the nonlinearity of the problem, it was 
deduced that the ideal frequency that produces a good 
antiresonance effect is in the neighbourhood of theoretical 
even frequencies. Furthermore, dissolution and permeation 
evolutions as functions of time are analysed in the case of 
hydrogen and mixtures. 
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