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Abstract 

A non-linear Cosserat theory involving the Arbitrary 
Lagrangian-Eulerian (ALE) method has been introduced 
into the brittle isotropic materials (amorphous glass and 
cement mortar) using the Modified Brazilian Disk (MBD) 
under an uni-axial compressive loading. These numerical 
experiments shed light on the nature of the Cosserat-based 
media and material moduli determination which are 
difficult to acquire using the most well-known experimental 
viewpoints. By using the identical micro-rotation constants 
( =  =  = LG

2 and  = 2/3), the Cosserat moduli 
reduce to only four constants for the 3D cases. According 
to the results obtained in this paper, the present methodol-
ogy substantiates that the Cosserat theory would be readily 
applied to the wide range of materials from the full 
amorphous materials to the heterogeneous materials by 
changing the length scale parameter. Some fresh routes and 
new outlooks are discussed afterwards. 

Ključne reči 
• nelinearna teorija Kosera 
• 3D MKE 
• veličina zrna 
• Modifikovani Brazilski Disk 
• karakteristična dužinska skala 

Izvod 

Opisana je nelinearna teorija Kosera koja sadrži metodu 
proizvoljnog Lagranžijana-Ojlerijana (ALE), koja je prime-
njena kod krtih izotropnih materijala (amorfno staklo i 
cementni malter) primenom modifikovanog brazilskog diska 
(MBD) pri jednoosnom pritisnom opterećenju. Ovi nume-
rički eksperimenti bacaju više svetlosti na prirodu medija 
tipa Kosera i na određivanje modula materijala, koji se 
nerado prihvataju s obzirom na dobro poznate eksperimen-
talne tačke gledišta. Korišćenjem identičnih mikro rotacio-
nih konstanti ( =  =  = LG

2 i  = 2/3), Kosera moduli 
se uprošćavaju na samo četiri konstante za 3D slučajeve. 
Prema rezultatima u ovom radu, sadašnja metodologija 
potkrepljuje da se Kosera teorija može opravdano primeniti 
na širok raspon materijala, od potpuno amorfnih materijala 
do heterogenih materijala, i to izmenom parametra 
dužinske skale. Data je diskusija nekih novih pravaca 
istraživanja i novih zapažanja. 

INTRODUCTION 

Development of Cosserat models, motivation and applications 

This article addresses the general continuum models 
involving independent rotations which were introduced by 
Cosserat brothers /1/ at the beginning of the last century. 
Their original nonlinear and geometrically exact develop-
ment has been widely forgotten for decades to be only 
rediscovered in a restricted linearized setting in the early 
sixties /2, 3, 4/. Since then, the original Cosserat concept 
has been generalized in various directions, notably by 
Eringen and his co-workers who extended the Cosserat 
concept to include also micro-inertia effects called ‘micro-

morphic theory’1. The further simplified Cosserat theory 
can be obtained assuming that the macro-rotations are the 
same as the micro-rotations, which is named couple stress 
theory or so-called indeterminate couple stress theory /8, 9/ 
and some elastic-plastic applications would be also found 
out in /10/. The Cosserat model includes in a natural way 
size effect and is increasingly used to regularize non-well 
posed situation to analyze more efficiently the diagonal 
fracture plane under a compressive loading for the hetero-

                                                           
1 Some of Eringen’s notations have been revised later on by 
Cowin /5/ and by Eringen himself /6, 7/. The original notations 
make some flaws and it should be carefully taken into account by 
the relevant Cosserat moduli or Cosserat material constants. 
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geneous materials, e.g. sand, soil /11, 12/ and granular 
materials using elasto-plasticity /13-21/. It is of importance 
to mention that the other groups have also obtained the 
micro-rotations of particles and their localizations on the 
shear bands via 2D numerical methods /22, 23/. The other 
applications are related to the artificial materials like foams 
/24-27/, cellular materials /28/ and some other outstanding 
contributions should be addressed such as /29-31/. 

Unfortunately, the direct measurements of micro-rotation 
of particles are not achievable with high accuracy but we 
can measure the micro-rotation in the diagonal fracture 
plane by means of the stereophotometric method /32/. 
Lakes proposed an experimental procedure to find out four 
supplementary material parameters c, ,  and  for the 
Cosserat media /33/. However, his proposed experimental 
test is not easy to achieve and it is based upon linear Cosse-
rat kinematics extracted by Gauthier et Jahsman /34, 35/ in 
the early seventies. The micropolar theory can be also used 
as a generalized continuum theory in which the microstruc-
ture detail can be averaged out by the “characteristic length 
scale” /8/ including some assumptions about the micro-rota-
tion vector /36/. The latter parameter can be considered as 
the infinitesimal homogeneous region in the heterogeneous 
media and it is frequently used to model damage phenol-
mena in the concrete /37, 38/. Over the years, a variety of 
boundary value problems have been solved in terms of 
analytical expression which are then used for the determi-
nation of material moduli in the infinitesimal linear Cosse-
rat model /39/. Notably, the solution of the pure torsion 
problem with prescribed torque at the end faces has been 
given /34, 35, 40/ and used for the determination of the 
length scales of different materials. Despite the huge effort 
spent in investigating the Cosserat model, two main draw-
backs still controversially remain. These two points are: the 
problem of physical meaningful boundary or side-condition 
for the micro-rotation and physically consistent determin-
tion of the Cosserat parameters. 

Paper organization 

In the present paper, we investigate and use the full 
Cosserat media or non-linear Cosserat media via our pro-
posed characteristic length scale assumptions and the grain 
sizes. First we present the linear and non-linear Cosserat 
theory and parameters identification with respect to the 
semi-positive definiteness of the constitutive laws and local 
positivity of strain energy density or so called strongly 
ellipticity. Second, we focus on the problem of indirect ten-
sile test known as Modified Brazilian Disk (MBD). We 
choose an amorphous material with very low porosity (glass 
of nano-scale pore size /41/) and a heterogeneous material 
with high porosity (cement mortar). The mentioned elastic 

 brittle materials are analyzed in order to evaluate the 
average grain size as the characteristic length scale in the 
Cosserat theory. As will be discussed in the next sections, 
the Cosserat theory would be used to the classical theory, 
i.e. Cauchy-Boltzmann theory as well as granular materials. 

MATHEMATICAL FORMULATION OF COSSERAT-
BASED SOLIDS 

This section does not contain any new result. Let us 
begin by establishing the coupled kinematical relations for 
the non-linear Cosserat models and their appropriate strain 
and curvature energy densities. 

Cosserat theory kinematics 

Classical kinematics or so-called linearized kinematics 
The most essential matter in the Cosserat theory is the 

existence of the additional independent degree of freedoms, 
i.e. micro-rotation vector (  3) besides the displacement 
vector (u  3) (Figure 1). 

 
Figure 1. a) Modelling heterogeneous materials b) Components of 

stress and stress moment tensors in Cosserat theory, c) Micro-
rotation compared to macro-rotation. 

Slika 1. a) Modeliranje heterogenog materijala, b) Komponente 
tenzora napona i momenta napona - Kosera teorija c) Mikro-

rotacija uporedjena sa makro-rotacijom 

The main idea comes from the fact that one point in the 
continuum media is not a simple point. As a matter fact, this 
point is small enough to be considered as a point (infini-
tesimal) in the classical continuum mechanics and it is 
equally large enough to provide the micro-rotation (to be 
representative of the micro-structure in a statistical sense) 
/42/. Eringen took into account the above-mentioned vectors 
and established the following second-rank tensors /7/: 

 :T u A   ,  where  ˆ ˆ: ijk k i jA e e e    and  , ˆ ˆ: ( )T
i j i ju u u e e       for  i,j,k = 1,2,3 (1a) 

 :k  ,  where  , ˆ ˆ: ( )T
i j i je e         for  i,j,k = 1,2,3 (1b) 

where 
3 3 3 3 3 3,  , , SO(3)u A               3

3 3

, 

 and  are first Cosserat stretch 
tensor, gradient of displacement vector, micro-rotation dual 

tensor, third-rank permutation tensor or Levi-Civita symbol 
and second-rank curvature tensor, respectively. 

3 3e     3k  
The above-depicted linearized kinematics provided by 

Eringen has been widely used to obtain the analytical 
solutions of the torsion test with the long circular Cosserat 
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bars /34/. The extracted analytical solutions by using the 
linearized kinematics as mentioned earlier are taken into 
account in determining the material constants, /33/. 
Geometrically exact kinematics or so-called non-linear 
kinematics 

Let’s get started with the deformation gradient tensor 
definition for the modern mechanics (F). The deformation 
gradient F is a second-rank tensor; according to the polar 
decomposition theorem, a second rank tensor can be described 
as a product of a positive symmetric tensor (U, V  
PSym(3)) with an orthogonal tensor (R = polar[F]  GL + 
(3)), /43/. This decomposition can be performed by means 
of right decomposition as below: 

 :F RU RU   (2) 

By considering 3U  3 , we can find out the first 
Cosserat stretch tensor known as llU  and we can write it 
again as follows: 

 : llT TE U R F ll     (3a) 

where 
2 3

exp( ) ll ...
1! 2! 3!

A A A
R A       

where ˆ ˆanti ijk k i jA e e e e        (3b) 

or 2
2

sin( ) 1 cos( )
exp( ) llR A A

 
 


    A  

where 
1 1

ˆaxl : 
2 2 ijk jk iA e A e A e     (3c) 

and : llF u   (3d) 

The Eqs. (3a), (3c) and (3d) prepare the first Cosserat 
stretch tensor in its geometrically exact or so-called non-
linear case as: 

 2
2

sin( ) 1 cos( )
: ll ll (ll )

T

T TE R F A A u
 

 

       

 

ll


 (4a) 

or 
2

sin( ) 1 cos( )
: ll cos( ) ll (ll )

T

T TE R F A u
 

  
 

        

 

ll


 (4b) 

We can further simplify Eq. (4a) and rewrite the first kinematical equation as below: 

 2
2 2 2

sin( ) sin( ) 1 cos( ) 1 cos( )
:TE u A A u A A

   
   

 
      2 u  (5) 

The curvature tensor or so-called wryness tensor K  can 
be extracted in terms of several definitions for micro-
rotation. Some fresh studies can be addressed in /44, 45/. 
As mentioned in /45/, there are many studies in which 
several techniques on how to describe the rotation group 
SO(3) are developed, Rooney /46/, Guo /47/, Pietrasz-
kiewicz and Badur /48/, Altman /49/, Atluri and Cazzani 
/50/, Borri et al. /51/, Geradin and Cardona /52/ and Chros-
cielewski et al. /53/2. General definition for wryness or 
curvature tensor can be written as below /54, 55, 56/: 

 
1

: :(
2

T T )K e R R   (6) 

where, 3 3K   , ,  

and  are curvature tensor, Levi-Civita 
symbol, proper orthogonal micro-rotation tensor and gradient 
of orthogonal micro-rotation tensor, respectively. There are 
seven natural Lagrangian curvature tensors or so-called 
wryness tensors for different finite rotation vectors /45/. 
The use of other forms like those done by Münch /55/ and 
Sansour /56/ would sustain some numerical discrepancies 
during the computations. By taking advantage of the rela-

3 3e    
3

3 3 3(3)R SO   
3 3R    

                                                           
2 These parameterizations can roughly be classified as vectorial 
and non-vectorial ones. Various finite rotation vectors as well as 
the Cayley-Gibbs and exponential map parameters are examples 
of the vectorial parameterization, for they all have three independ-
ent scalar parameters as Cartesian components of a generalized 
vector in the 3D vector space (see /44/ and /45/ for more detail). 

tion proposed by Pietraszkiewicz and Eremeyev., i.e. 
[ 2 ,2 ]    , the above-defined curvature tensor can be 

written as below: 

3 2

sin( ) sin( ) 1 cos( )
: llTK A

   
  

  

      
 
 

 (7a) 

or 

2
2 3

2sin( ) 1 cos( ) sin( )
:TK A

    
A  

  

  
      (7b) 

Therefore, we can summarize the constitutive laws for 
non-linear Cosserat theory as below: 

 

2
2

2
2

sin( ) sin( ) 1 cos( )
:

1 cos( )

TE u A A u A

A u

  
  






     


 

(8a) 

2
2 3

2sin( ) 1 cos( ) sin( )
:TK A

    
A  

  

  
      (8b) 

By neglecting the non-linear phrases in terms of u and 
A and assuming small deformation (sin(  )/  = 1 and 

(2sin(  ) –  )/  = 1 when   0), we infer the 

Eringen’s simplified kinematics or so-called linear 
kinematics (Eqs. (1a) and (1b)). In the present study, we 
incorporate recently-explored strain energy densities into 
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the Cosserat-based media involving the Arbitrary Lagran-
gian Eulerian (ALE) moving mesh method /57/3. In the 
next sub-sections, we review the anisotropic and isotropic 
constitutive laws including and excluding the centro-
symmetric postulates for the continuum mechanics. 
However, we concentrate on the centro-symmetric 
materials for our numerical experiments in the current 

y density concept and their corresponding 
co

n ofE andK based on 
e expansion power series theory: 

 

study. 

Total strain energ
nstitutive laws 

For a non-linear or so-called geometrically exact elastic 
Cosserat solids, a total strain energy density function can be 
expressed as a polynomial in functio
th

mp cs curv( , ) ( , ) ( , ) ( , )W E K W E K W E K W E K    (9a) 

 0
mp mp

1
( , ) : : :

2
W E K W E E E  S D  (9b) 

0 0
cs cs cs

1 1
( , ) : : : : : :

2 2
W E K W E K K E W E K    C C C  (9c) 

 0
curv curv 2

Centro-sym

1
( , ) : : :W E K W K K K  B E  (9d) 

metric case: anisotropic and isotropic constitu-
tive laws 

In the absence of initial energy densities, stress and 
couple stress (W0

mp = W0
cs = W0

curv = 0 and S = B = 0) and 
the hypothesis of centro-symmetry effects for the Cosserat 
media (C = 0), we can find the following anisotropic consti-
tutive equations: 

 
( , )

:
W E K

E
E

 
 D   or  ij ijkl klD E   

fo r  , , , 1,2,3i j k l   (10a) 

 

and 

( , )
:

W E K
m K

K


 E   or  ij ijkl klK E K  

 for  , , , 1,2,3i j k l   (10b) 

By applying isotropy property for the stiffness and 
curvature stiffness fourth-rank tensors, one can find out the 

llowing relations: fo

 2  sym 2 skew tr[ ] llcE E E   

or   ( ) ( ) tr[ ]T
c cE E          llE  (11) 

nd a

 tr[ ] llTm K K K       or 

 ( )sym ( )skew tr[ ]m K K         llK  (12a) 

or 
3 ( )

( )devsym ( )skew tr[ ]
2

m K K
       

     (llK 12b) 

                                                           
3 In this method, the mesh movement follows the movement of 
physical material and it is very useful in solid mechanics involving 
relatively large deformation. It is of great importance to remind 
that for very large deformation, it is more beneficial to re-mesh the 
FEM model. This matter removes mesh distortion drawback 
during the computations. 

 and  are the classical Lamé’s constants and c, ,  and 
 are new additional material parameters introduced into 
Cosserat theory. 

By taking advantage of the isotropy of the constitutive 
laws as mentioned earlier, we can rewrite the strain energy 
density and curvature energy density as below: 
– strain energy density 

 

2 2 2
mp

2 2 2

22 2

( ) sym skew tr [ ]
2

3 2
devsym skew tr [ ]

6
1

tr [ ] ( ) ( )tr[ ]
2

c

c

c c

W E E E E

E E

E E E

E

 

  

    

  


  

    

 (13a) 

– curvature energy density 

 

2 2 2
curv

2 2 2

22 2

( ) sym skew tr [ ]
2 2 2

3 ( )
devsym skew tr [ ]

2 2 6
1

tr [ ] tr[ ]
2

W K K K K

K K K

K K K

    

      

  

 
  

   
  

  

(13b) 

By using of the mathematical points of view, the strain 
energy density Wmp(E;K) and the curvature energy den-
sity Wcurv(E;K) would have the local positivity condition. 
But that is not sufficed and the semi-positive definiteness of 
fourth-rank stiffness tensors of constitutive laws would be 
required either /58/: 

 
0,  3 2 0,  0

0, 3 ( ) 0, 0, 0
c   

       
   

       
 (14) 

Traditionally, the four supplementary material parame-
ters, i.e., c, ,  and  can be expressed by the other terms, 
lb, lt, N,  /33/4. 

Equilibrium equations 

In the absence of macro and micro-accelerations the equi-
librium equations of the Cosserat theory are given as below 
under weak form formulation: 

,( )( )ji j it b dV 0     for i, j =1,2,3 on (16a) 3( ) ]0, ]t T  

,( )( ji j ijk jk it m e c dV) 0    

                  

 i, j =1,2,3 on (16b) 3( ) ]0, ]t T  

                                         
4 They represent the characteristic length scale for bending, charac-
teristic length scale for torsion, coupling number and polar ratio, 
respectively. 

The above-defined so-called material parameters have been sub-
stantially applied for determining the Cosserat material constants, 
notably by Lakes /59, 40, 60/. The previously indicated Cosserat 
moduli (c, ,  and ) could be denoted as below /61/: 

 2 :
2(2 * )b


 




l   and  2 :
2 *t
 
 





l  (15a) 

 2 :
2( * )

c

c

N
 

   
 


2 1N   where  0  (15b) 



 :
 

  


 
 

  where  
3

2
0  (15c) 

where,  and * stand for the Cosserat couple modulus and 
Pseudo-Lamé’s constant in accordance with Eringen’s notation. 
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(16a) and (16b) imply that stress tensorij is not necessarily 
symmetric and its antisymmetric part is determined by the 
divergence of the couple stress tensor mij or so-called stress 
moment. These equations ((16a) and (16b)) are the outcome 
of the virtual work principle on deformable solids, /62/. 

ANALYTICAL EVALUATION OF MATERIAL PARAME-
TERS IN MICROPOLAR THEORY AND CHARACTER-
ISTIC LENGTH 

General considerations 

As explained earlier, the non-linear kinematics in conjunc-
tion with the ALE method are used into 3D-FEM calcula-
tions. This issue unwillingly produces the non-linear com-
putations and the runtime would last more than those 
carried out for the linear Cosserat elasticity. This matter is 
entirely different from the material non-linearities issue in 
which the non-linear analyses are required. It is well worth 
noting that the authors use the most complete kinematics 
(geometrically exact) which is originally proposed by 
Cosserat brothers in early 1909, involving ALE moving 
mesh method. These features help us to carry out the FEM 
simulations as far as possible close to the original kinemat-
ics or realistic case. Anyway, in the practical engineering 
applications, linear Cosserat theory is quite adequate in 
describing the deformations (small deformation issue). We 
fix the relative error to 1  10–6 for all computations herein. 
The mesh independency issue has been evaluated for our 
computations either. 

Analytical evaluation of curvature energy density using 
nullspace theory 

Before getting started with non-linear Cosserat theory, it 
is apt to emphasize the curvature energy density classifica-
tions using Toupin’s parameter /8/, i.e. characteristic length 
scale Lc as below, /63/: 
Linear Cosserat theory 

This case is well investigated by first author /58, 63, 64/ 
and it is numerically studied in /65, 66/ by the authors: 
• Point-wise case called case1 /55/: This case corresponds 

to  = 0,  = 0 and  = Lc
2 
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– Deviatoric point-wise case, /67/: This case corresponds 
to  = –Lc

2/3,  = 0 and  = Lc
2
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• Symmetric case called case2 /68-71/: This case corre-
sponds to  = 0 and  =  = Lc

2/2 
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• Conformal case called case3 /63, 65, 72, 73/: This case 
corresponds to  = –Lc

2/3 and  =  = Lc
2/2 
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• Symmetric case with non-negative  called case4: This 
case corresponds to  =  =  and  = Lc
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Non-linear Cosserat theory  
The curvature strain energy density for non-linear kine-

matics or so-called geometrically exact has been described 

in function of #
ˆ : Curl [T ]K R R /74, 55/ and it is related to 

the curvature tensor or wryness tensor by the following 
equation /74, 55/: 

 ˆ [ ]llK K tr K   (22) 
3 3

#Curl [ ]R    , 3(3)R SO 3    , and 3 3K    

are row wise curl of proper orthogonal micro-rotation tensor, 
proper micro-rotation tensor and curvature tensor or wryness 
tensor, respectively. Correspondingly, we can rewrite dif-
ferent curvature energy densities as below: 
• Point-wise case called case1 /55/: This case corresponds 

to  = Lc
2,  = 0 and  = Lc
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– Deviatoric point-wise case, /67/: This case corresponds 
to  = –Lc

2/3,  = 0 and  = Lc
2:
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• Symmetric case called case2 /68-71/: This case corre-
sponds to  = Lc

2 and  =  = Lc
2/2: 
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• Conformal case called case3 /63, 65, 72, 73/: This case 
corresponds to  = –Lc

2/3 and  =  = Lc
2/2: 
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• Symmetric case with non-negative  called case4: This 
case corresponds to  =  =  and  = Lc
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The comparison among the cases for both linear and 
non-linear Cosserat theories substantiates that case1-devia-
toric, case3-conformal case and case4 remain unchanged. 
Only the point-wise and symmetric cases (case1 and case2) 
take different configurations in the curvature energy density 
framework (Table 1). It is well worth noting that case 4 is 
conventionally defined and it is trivial that case4 retains the 
same feature explained earlier (linear Cosserat theory). 

Table 1. Comparison among various curvature energy density cases for linear and non-linear Cosserat theories. 
Tabela 1. Poređenje raznih slučajeva gustine krivolinijske energije za linearnu i nelinearnu teoriju Kosera. 

Case No. and description Linear Cosserat theory Non-linear Cosserat theory 
Case1-Pointwise case  = 0,  = 0 and  = Lc

2  = Lc
2,  = 0 and  = Lc

2 
Case1-Deviatoric case  = –Lc

2/3,  = 0 and  = Lc
2  = –Lc

2/3,  = 0 and  = Lc
2 

Case2-Symmetric case  = 0 and  =  = Lc
2/2  = Lc

2 and  =  = Lc
2/2 

Case3-Conformal case  = –Lc
2/3 and  =  = Lc

2/2  = –Lc
2/3 and  =  = Lc

2/2
Case4-Non-negative   =  =  and  = Lc

2  =  =  and  = Lc
2 

 
Characteristic length scale Lc determination 

Characteristic length scale overview 
In the present study, we pay attention to case4 which 

provides symmetric stress moments like case2. The above-
described cases reduce the six material moduli to only four 
material moduli, i.e. , , Lc and c. The most salient point 
of Cosserat theory is to determine these parameters. Tradi-
tionally, we take c equal to  in the Cosserat simulations. 
However, the determination of Lc is not easy and several 
propositions pertaining to the Lc could be found out in the 
open literature: 
1. Gauthier and Jahsman suggested two characteristic length 

scales known as lb and lt which deal with bending and 
torsion characteristic length scales /34, 35, 75/. These charac-
teristic length scales come from the analytical solution of 
the linear Cosserat elasticity and they are widely applied 
by R.S. Lakes /33/. The original characteristic length scales 
have been extracted via long Cosserat bars under pure torsion. 
Determination of these parameters is very difficult and 
they are basically obtained from linear Cosserat theory. 

2. Bazant proposed Lc nearly 2.7 times the largest aggregate 
in concrete /76, 37/ in the early eighties and his idea is 
followed by several papers in the concrete and cement 
society /38/. 

3. Forest et al. applied the de Borst’s assumption (case2-
symmetric case) /70/ for 2D models i.e.  = 0 and  = . 
They defined the characteristic length scale Lc = /   

using aluminium SiC metal matrix composite /77/. Lc 
value was considered between 10–4 and 102 mm. 

4. Zhang et al. studied the Cosserat materials with Voronoi 
cell via FEM experiments /30/. They used three Lc values 
(Lc = 0.01 mm, Lc = 0.1 and Lc = 1.0 mm). Based upon 
their studies, the size effect was captured while they 
increased Lc in their linear 2D-FEM Cosserat models. 
The same methodology has been neatly applied to the 
elastic-plastic Cosserat materials by the abovementioned 
authors for granular materials /78/. 

Definitions of characteristic lengths and our assumptions 
Regarding the stress-strain and stress moment-curvature 

tensor relations (constitutive laws), two sets of material 
constants or so-called Cosserat moduli should be taken into 

account. Due to the dimensional difference between the two 
sets of parameters, at least three intrinsic characteristic 
lengths can be defined for an isotropic elastic micropolar 
material. These characteristic lengths can be denoted as: 
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As previously discussed, six Cosserat material parame-
ters should be deemed for 3D-models, i.e. (, , c, , , 
and ). These parameters can be described as (, , c, Lc1, 
Lc2 and Lc3). By taking advantage of the classical notations 
for Cosserat theory and fixing c (c = ), we attain the 
following relations: 
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Assuming that Lc1, Lc2 and Lc3 deal with three diameters 
of an ellipsoid grain as illustrated in Fig. 2, the characteris-
tic length scales can be re-written as below: 

 
1 1

2 , 2c cL a L b   and  (30) 
1

2cL  c

If three characteristic length scales become identical, the 
ellipsoid shapes can be transformed to the spherical ones. 
Moreover, the aforementioned assumption coincides with 
case 4 (symmetric case with non-zero ). In the next section, 
we shall apply this curvature energy density configuration 
for our non-linear Cosserat models involving ALE method. 

 

3D NUMERICAL SIMULATION OF THE ISOTROPIC 
NON-LINEAR COSSERAT THEORY 

As explained previously, the equality of characteristic 
length scale ( =  =  = LG

2 where LG is mean value of 
grain diameter for the granular materials) leads to case 4. 
Therefore, it is essential to substantiate the stiffness bound-
edness property for case4 by means of the MT–Log(Lc) 
diagram. This semi-logarithmic diagram is utilized to prove 
that the mentioned case is physically feasible, i.e. it yields 
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the size effect in the sense that smaller specimens are stiffer 
than larger ones /65/. This matter has been investigated for 
linear Cosserat elasticity in /62/ via torsion test of a 

Cosserat bar. It is of great importance to remind that other 
cases have been taken into account in another study and 
they are out of scope of the present study. 

 
a) b) c) 

Figure 2. Typical illustration of the ellipsoid grains assumption including the characteristic length scales (length=2a, width=2b and 
height=2c), a) Full ellipsoid, b) One-half ellipsoid, c) One-quarter ellipsoid. 

Slika 2. Tipična ilustracija pretpostavke elipsoidnih zrna sa karakterističnim razmerama dužina (dužina=2a, širina=2b i visina=2c), 
a) potpuni elipsoid, b) polu-elipsoid, c) četvrtina elipsoida. 

 
a) b) 

Figure 3. Mesh independency evaluation of the non-linear Cosserat elasticity involving ALE for the circular Cosserat bar including 
E=30 GPa, =0.28, c=, Lc=1E8 mm and finite rotation along x3 axis =10°. a) Geometrical configuration of Cosserat bar 

(diameter=40 mm, length=160 mm), b) Torque versus DOFs curve for the symmetric case with non-zero  or case4 by steadily growing 
element number from 360 to 190720 elements (ansatz quadratic and linear Lagrange shape functions providing 28-node hexahedral solid 

elements) and up to 5259747 DOFs including Lagrange multiplier DOFs. 
Slika 3. Proračun nezavisnom mrežom nelinearne Kosera elastičnosti sa ALE za kružni Kosera štap sa E=30 GPa, =0,28, c=, 

Lc=1E8 mm i konačnom rotacijom za =10° duž ose x3. a) Geometrijska konfiguracija Kosera štapa (prečnik=40 mm, dužina=160 mm), 
b) Moment u funkciji stepeni slobode za simetričan slučaj sa ne-nultim  ili slučaj4 pri laganom porastu broja elemenata od 360 do 

190720 (počev od kvadratnih i linearnih funkcija oblika Lagranža sa 28-čvornih heksaedarskih punih elemenata) pa do 5259747 stepeni 
slobode uključujući i Lagranžove koeficijente stepeni slobode.

As it is well-known, the most Cosserat effect occurs 
when one sample is under pure torsion. Due to this fact, we 
chose the torsion test as a relevant tool to investigate our 
non-linear Cosserat models. As pointed out previously, to 
achieve the torsion test, the geometrically-exact angle of 
rotation should be applied on the top of specimen and after 
that, we integrate over the top of specimen for extracting 
the moment of torsion (see /65, 66/ for more detail). The 
total moment of torsion about the e3-axis at the top of 
specimen consists of stiffness-based as well as curvature 
stiffness-based counterpart /64/: 

Tmp Tcurv

Top Top

:=stiffness-based torque :=curvature stiffness-based torque

32 31 33: ( )

M M

TM x y dxdy m dxdy     
 

 (31)

The mesh-independency issue is essential when we treat 
the size effect in the generalized continua, e.g. Micro-dila-
tation, Cosserat, Micro-stretch and Micro-morphic media. 
To handle it, the MT versus No. of DOFs is plotted by 
constantly growing the mesh density from very coarse mesh 
(11304 DOFs) to extremely fine (5259747 DOFs) (Fig. 3) 
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3D-FEM simulation of Modified Brazilian Disk specimens 

In the present study, we consider two different elastic brittle 
materials, i.e. float glass and cement mortar (Table 2). In 
Fig. 4, the Scanning Electronic Microscopic (SEM) images 
for both materials are shown. Particularly, we focus on the 
indirect tensile stresses around the central hole of MBD 
samples /79/. 

The uni-axial compression Brazilian test is commonly 
used on brittle materials to apply the compression at top of the 
disk specimen. This loading condition can provide indirect 
tensile stress in the direction of the median plane. The MBD 
consists of one small central hole (a = 30 mm diameter) on the 
outer disk of diameter and thickness 150 mm (= D) and 
100 mm (= L), in respect (Fig. 5a). This geometry is taken to 
induce the stress concentration around the notch tip. 

Table 2. Size-independent and size-dependent mechanical properties of float glass and cement mortar. 
Tabela 2. Dimenziono nezavisne i zavisne mehaničke osobine flot stakla i cementnog maltera. 

Mechanical properties Float glass Cement mortar 
Young’s modulus, E (GPa) 58 20 

Poisson’s ratio,  (-) 0.218 0.28 
Ultimate tensile strength, UTS (MPa) 46.70 7.5 

Characteristic length scale, Lc=LG (mm) 10–6 1 
Cosserat couple modulus, c (GPa) c==E/2(1+) c==E/2(1+) 

(a)   (b)  

Figure 4. SEM images of chosen materials a) Float glass, b) Cement mortar 48 hours after hydration process. 
Slika 4. SEM slike izabranih materijala (flot staklo i cementni malter), a) flot staklo, b) cementni malter 48 sati posle hidratacije. 

Hence, these Modified Brazilian Disk (MBD) samples 
will be broken using the notch tip crack concept /80/. This 
is absolutely very good wayout in tensile strength evalua-
tion of elastic brittle materials. This trims off the interfer-
ences among boundary conditions and high concentration 
zones at notch root (contact problem), i.e. central hole of 
the MBD samples. 

The 3D-FEM implementations have been made by the 
isoparametric quadratic and linear Lagrange shape func-
tions for displacement and micro-rotation vectors (u  3 
and    3), respectively. The main advantage of this choice 
is to obtain very stable mesh-independency problem as well 
as low computation costs, i.e. they are computationally 
affordable and rather exact. All computations are done by 
the Geometric Multi-Grid (GMG) solver well-known as an 
iterative solver including the parallelization of non-sym-
metric systems. The major advantage of the above-men-
tioned solver is its ability to handle very large Cosserat 
models. This matter gets more crucial when we would like 
to solve non-linear generalized continuum media. In these 
cases, more DOFs should be expected at every node 
comparing to the classical theory and consequently, direct 
solvers efficiency becomes less colourful for huge DOFs 

(Fig. 5c). In Table 3, mesh statistics of the 3D-FEM model 
of MBD samples are given. It is essential to mention that 
boundary conditions for the micro-rotation vector are still 
open problems. Some groups call them as the artificial 
boundary conditions and they insist on the fact that one 
should not provide any boundary conditions in conjunction 
with the micro-rotations. Unlikely, other groups imply these 
kinds of boundary conditions for micro-rotations. This is 
neatly performed for the microstretch theory by Kirchner 
and Steinmann in their landmark work /81/. They have 
substantiated that lack of the micro-rotation boundary con-
ditions induces a constant micro-rotation field. In the 
current work, this methodology is followed throughout the 
numerical computations. 

Numerical simulation results and discussion 

In this sub-section, we investigate the impact of the 
characteristic length which has been presumably considered 
as mean value of the grains diameter (Lc1 = Lc2 = Lc3 = LG). 
We take into account two different materials, i.e. glass and 
cement mortar. The float glass is well known as a non-
granular material (amorphous material). An interesting con-
sequence of this choice is that the characteristic length scale 
must be nearly zero or zero (Lc  0). In this case, the 
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Cosserat theory reduces to one kind of classical theory 
(Cauchy-Boltzmann theory). In the meanwhile the micro-
rotation vector reaches very small values relative to the 
cement mortar. Considering the cement mortars as highly 
porous materials including the aggregates and independent 
micro-rotation concept which is explicitly built in the 

Cosserat-based media, we find out relatively high micro-
rotation values. As a matter of fact, the Cosserat-theory not 
only handles the classical theories (Lc = 0 and c = 0) but 
also it promises an explicit methodology to treat the granu-
lar materials.  

(a)  (b)  (c)  

Figure 5. Illustration of the Modified Brazilian Disk (MBD) specimens (outside diameter=150 mm, inside diameter=30 mm and thick-
ness=100 mm), a) Geometrical configuration of chosen MBD specimen for FEM experiments, b) One-quarter symmetry assumption 

using median plane and its normal plane as symmetry planes, c) Mesh density of chosen MBD specimen (Element type= hexahedral 28-
node solid element, DOFs=4605903 including Lagrange multiplier DOFs). 

Slika 5. Prikaz epruvete Modifikovanog brazilskog diska (MBD) (spoljni prečnik=150 mm, unutrašnji prečnik=30 mm i 
debljina=100 mm), a) geometrijska konfiguracija epruvete MBD za FEM eksperimente, b) pretpostavka četvrtine simetrije korišćenjem 
srednje ravni i njene normalne ravni kao ravni simetrije, c) gustina mreže MBD epruvete (tip elementa=puni heksaedar sa 28 čvorova, 

stepeni slobode=4605903 zajedno sa Lagranžovim koeficijentima stepeni slobode) 

                   
d) 

a) b) 

c) 

Figure 6. Non-linear Cosserat outcomes for float glass and cement mortar under indirect tensile test via the Modified Brazilian Disk (MBD) 
specimens (compressive force=10 kN), a) Norm of micro-rotation vector () or micro-rotation vector magnitude in degree including micro-

rotation vector field (black arrows) for float glass (maximum value around the central hole=8.810–3 (°), b) Norm of micro-rotation vector 
() or micro-rotation vector magnitude in degree including micro-rotation vector field (black arrows) for cement mortar (maximum value 

around the central hole=2510–3 (°), c) Normal stress component in x direction (xx) in MPa, d) Shear stress component in xy plane (xy) 
Slika 6. Nelinearna Kosera rešenja za flot staklo i cementni malter u indirektnom ispitivanju zatezanjem MBD epruveta (pritisna sila=10 kN), 

a) Normirani vektor mikrorotacije () ili intenzitet vektora mikrorotacije u stepenima zajedno sa poljem vektora mikrorotacije (crne 
strelice) za flot staklo (najveća vrednost je oko centralnog otvora=8.810–3 (°), b) Normirani vektor mikrorotacije () ili intenzitet vektora 

mikrorotacije u stepenima zajedno sa poljem vektora mikrorotacije (crne strelice) za cementni malter (najveća vrednost je oko centralnog 
otvora=2510–3 (°), c) Normalna komponenta napona u x pravcu (xx) u MPa, d) Komponenta napona smicanja u xy ravni (xy) u MPa. 
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Table 3. Mesh statistics and 3D-FEM model assumptions for the non-linear Cosserat computations. 
Tabela 3. Statistika mreže i 3D-FEM pretpostavke modela za nelinearni proračun Kosera. 

Element type Element No. FEM symmetry DOFs 
Quadratic and linear for u  3 and   3 165000 one-quarter 4.606 Mi 

 
Another feature which can be basically found out from 

the numerical computations is that the stress localization is 
less colourful in the Cosserat theory compared to the classi-
cal one /82-84/. This matter can be interpreted by the fact 
that there is the energy equality feature. Hence, one part of 
applied actions, e.g. forces and moments would be distrib-
uted through the strain energy density and another counter-
part would be used to undertake the curvature energy density. 
This issue is well-known and it well agrees with the reality 
of the granular and heterogeneous materials. Correspond-
ingly, the weak shear stress value is obtained near the 
central hole of the MBD 3D-FEM models. It is obvious that 
the symmetric stress moment (m  sym(3)  3  3) 
might be expected due to the equality of  and  like case2. 
The numerical experiments substantiate this matter, i.e. 
mij = mji. However, the stress tensor is still asymmetric 
second-rank tensor and its skew-symmetric counterpart 
provides the stress moment tensor. Therefore, the amount 
of the stress moment tensors unavoidably depends on the 
shear stresses and the actions which significantly produce 
them, e.g. pure torsion test or pure shear test commonly 
used to investigate the shear effects in classical mechanics. 
To exemplify this issue, we refer the landmark studies of 
Gauthier and Jahsman /35/ and Gauthier himself /75/. More 
recent investigation would be also addressed in /64/. 

SUMMARY, CONCLUSION AND OUTLOOK 

The numerical experiments of non-linear Cosserat theory 
have been performed on the brittle materials under indirect 
tensile strength experiments well-known as Modified 
Brazilian Disk (MBD). This sort of tensile strength assess-
ment experiments is successfully applied into the brittle 
materials in predicting their tensile strength. This also 
avoids any other side-effects which simultaneously occur 
through the brittle samples during the test procedure. The 
presence of the central hole neatly wipes out these effects 
and results in quite well tensile strength estimation for 
brittle elastic materials. To achieve the non-linear Cosserat 
numerical experiments herein, three main assumptions are 
taken into account: 
1. The material moduli, i.e. , , and , which link the stress 

moment tensor to the curvature tensor or so-called 
wryness tensor in the second constitutive law of the 
Cosserat-based media, are considered in function of the 
microstructure state, notably the grain size, 

2. The characteristic length scale Lc is considered as an 
average grain diameter (Lc := LG). The ellipsoid grains 
with three different diameters and random orientations 
are primarily accounted for. Using the identical character-
istic length scales for the aforementioned grains, the 
spherical ones are created. 

3. According to the physical and mathematical restrictions 
on the Cosserat-based media as generalized continuum 

media, parameter c is customarily fixed to . As pointed 
out previously, Lc = 0 and c = 0 yield the classical 
theory. The fact that we take c =  is beneficial in the 
sense that it still stands for the Cosserat media whatever 
Lc values. Furthermore, it is computationally affordable 
while we are in front of enormous amount of DOFs, par-
ticularly for the non-linear Cosserat theory. 
Based upon above-mentioned assumptions, the computa-

tions have been carried out for our selected materials. We 
have willingly chosen these materials, i.e. glass and mortar 
cement. They represent two extremely different micro-
structures, i.e. amorphous and heterogeneous micro-struc-
tures. Using the numerical outcomes, one can readily 
realize that the amorphous materials are extremely close to 
the classical theory of elasticity, whereas the granular 
materials provoke one kind of independent rotation whose 
effect can be neatly covered in an explicit manner via the 
Cosserat theory. In the case of granular materials, these 
effects are entirely clear and obvious. Therefore, more micro-
rotation and less stress localization would be expected for 
these materials. Lc value has a great impact on these inde-
pendent micro-rotations which are promised under Cosserat 
theory. This would be a fresh route for material modelling 
of the heterogeneous materials. Nevertheless, some salient 
open problems still remain: 
• The first is the micro-rotation boundary conditions issue, 

one can ask himself whether or not these boundary condi-
tions would be taken into account (grid-framework bound-
ary conditions versus artificial boundary conditions), 

• The second one is c called Cosserat couple modulus. 
According to the generalized continuum theory, very small 
c values make us closer to the classical theory, whereas 
the large c, i.e. c   coincides with the couple stress 
theory or so-called indeterminate couple stress theory /8, 
9, 85/. Although, these case limits or penalized cases are 
pretty well-known, the physical meaning of this material 
modulus is still an open problem. 

ACKNOWLEDGEMENTS 

The authors thank Prof. P. Neff who provided some very 
fruitful comments and suggestions about the non-linear 
Cosserat theory. The authors also thank Prof. S. Forest for 
his valuable remarks about the generalized continuum 
mechanics during our meeting held at Ecole des Mines de 
Paris in Paris last summer. 

REFERENCES 

1. Cosserat, E. Cosserat, F., Théorie des corps déformables. 
Librairie Scientifique A. Hermann et Fils (engl. translation by 
D. Delphenich 2007, pdf available at 
http://www.mathematik.tudarmstadt.de/fbereiche/analysis/pde/
staff/neff/patrizio/Cosserat.html), Paris, 1909. 

2. Günther, W., Zur statik und kinematik des cosseratschen 
kontinuums. Abh. Braunschweig Wiss. Ges., 10:195-213, 1958. 
(In German). 

a) b) 

INTEGRITET I VEK KONSTRUKCIJA 
Vol. 11, br. 2 (2011), str. 63–74 

STRUCTURAL INTEGRITY AND LIFE
Vol. 11, No 2 (2011), pp. 63–74

 

72

http://www.mathematik.tudarmstadt.de/fbereiche/analysis/pde/staff/neff/patrizio/Cosserat.html
http://www.mathematik.tudarmstadt.de/fbereiche/analysis/pde/staff/neff/patrizio/Cosserat.html


Infinitesimal Non-Linear Cosserat Theory based on  Infinitezimalna nelinearna teorija Kosera na bazi 
 

3. Eringen, A.C., Suhubi, E.S., Nonlinear theory of simple micro-
elastic solids. Int. J. Eng. Sci., 2:189-203, 1964. 

4. Green, A.E., Rivlin, R.S., Multipolar continuum mechanics. 
Arch. Rat. Mech. Anal., 17:113-147, 1964. 

5. Cowin, S., An incorrect inequality in micropolar elasticity 
theory. Z. Angew. Math. Physik, 21:494-497, 1970. 

6. Eringen, A.C., Kafadar, C.B., Polar Field Theories. In A.C. 
Eringen, editor, Continuum Physics, volume IV: Polar and 
Nonlocal Field Theories, pages 1-73. Academic Press, New 
York, 1976. 

7. Eringen, A.C., Microcontinuum Field Theories. Springer, 
Heidelberg, 1999. 

8. Toupin, R.A., Elastic materials with couple stresses. Arch. Rat. 
Mech. Anal., 11:385-413, 1962. 

9. Mindlin, R.D., Influence of couple-stresses on stress concen-
trations. Experimental Mechanics, 3(1):1-7, 1963. 

10.  Ristinmaa, M., Vecchi, M., Use of couple-stress theory in 
elasto-plasticity. Comp. Meth. Appl. Mech. Engng., 136:205-
224, 1996. 

11.  Alshibli, K.A., Alsaleh, M.I., Voyiadjis, G.Z., Modelling 
strain localization in granular materials using micropolar 
theory: mathematical formulations. Int. J. Num. Anal. Meth. 
Geomech., 30(15):1501-1524, 2006. 

12.  Alshibli, K.A., Alsaleh, M.I., Voyiadjis, G.Z., Modelling 
strain localization in granular materials using micropolar 
theory: numerical implementation and verification. Int. J. 
Num. Anal. Meth. Geomech., 30(15):1525-1544, 2006. 

13.  Vardoulakis, I., Shear-banding and liquefication in granular 
materials on the basis of a cosserat theory. Ingenieur-Archiv, 
59:106-114, 1989. 

14.  de Borst, R., Simulation of strain localization: a reappraisal of 
the Cosserat continuum. Engng. Comp., 8:317-332, 1991. 

15.  de Borst, R., Sluys, L.J., Localization in a Cosserat continuum 
under static and loading conditions. Comp. Meth. Appl. Mech. 
Engng., 90:805-827, 1991. 

16.  de Borst, R., A generalization of J2-flow theory for polar 
continua. Comp. Meth. Appl. Mech. Engng., 103:347-362, 1992. 

17.  Iordache, M.M., Willam, K., Localized failure analysis in 
elastoplastic cosserat continua. Comp. Meth. Appl. Mech. 
Engng., 151(3-4):559-586, 1998. 

18.  Bauer, E., Analysis of shear band bifurcation with a 
hypoelastic model for a pressure and density sensitive granular 
material. Mechanics of Materials, 31(9):597-609, 1999. 

19.  Tejchman, J., Gudehus, G., Shearing of a narrow granular 
layer with polar quantities. Int. J. Num. Anal. Meth. Geomech., 
25(1):1-28, 2001. 

20.  Manzari, M.T., Application of micropolar plasticity to post 
failure analysis in geomechanics. Int. J. Num. Anal. Meth. 
Geomech., 28(10):1011-1032, 2004. 

21.  Maier, Th., Comparison of non-local and polar modelling of 
softening in hypoplasticity. Int. J. Num. Anal. Meth. Geomech., 
28(3):2004, 2004. 

22.  Bardet, J.P., Proubet, J., A numerical investigation of the 
structure of persistent shear band in granular media. Géotech-
nique, 41(4):599-613, 1992. 

23.  Bardet, J.P., Proubet, J., A shear band analysis in idealized 
granular materials. J. Engng. Mech., ASCE, 118(2):397-415, 
1992. 

24.  Diebels, S., Steeb, H., The size effect in foams and its 
theoretical and numerical investigation. Proc. R. Soc. London 
A, 458:2869-2883, 2002. 

25.  Diebels, S., Steeb, H., Stress and couple stress in foams. 
Comp. Mat. Science, 28:714-722, 2003. 

26.  Neff, P., Forest, S., A geometrically exact micromorphic 
model for elastic metallic foams accounting for affine micro-
structure. Modelling, existence of minimizers, identification of 

moduli and computational results. J. Elasticity, 87:239-276, 
2007. 

27.  Tekoglu, C., Onck, P.R., Size effects in two-dimensional 
voronoi foams: A comparison between generalized continua 
and discrete models. Journal of the Mechanics and Physics of 
Solids, 56(12):3541-3564, 2008. 

28.  Tekoglu, C., Size effect in cellular solids. PhD thesis, Rijks-
universiteit, Netherlands, 2007. 

29.  Zhang, H.W., Wang, H., Wriggers, P., Schrefler, B.A., A finite 
element method for contact analysis of multiple cosserat 
bodies. Comput. Mech., 36(6):444-458, 2005. 

30.  Zhang, H.W., Wang, H., Chen, B.S., Xie, Z.Q., Analysis of 
cosserat materials with voronoi cell finite element method and 
parametric variational principle. Comp. Meth. Appl. Mech. 
Engng., 197(6-8):741-755, 2008. 

31.  Riahi, A., Curran, J.H., Full 3d finite element cosserat formu-
lation with application in layered structures. Applied Mathe-
matical Modelling, 33(8):3450-3464, 2009. 

32.  Desrues, J., Localisation de la déformation plastique dans les 
matériaux granulaires. PhD thesis, University of Grenoble, 
1984. (In French). 

33.  Lakes, R.S., Experimental microelasticity of two porous 
solids. Int. J. Solids Struct., 22(1):55-63, 1986. 

34.  Gauthier, R.D., Jahsman, W.E., A quest for micropolar 
constants. ASME J. Appl. Mech., 42:369-374, 1975. 

35.  Gauthier, R.D., Jahsman, W.E., Bending of a curved bar of 
micropolar elastic material. ASME J. Appl. Mech., 43:502-
503, 1976. 

36.  Bazant, Z.P., Christensen, M., Analogy between micropolar 
continuum and grid frameworks under initial stress. Int. J. of 
Solids and Structures, 8(3):327-346, 1972. 

37.  Pijaudier-Cabot, G., Bazant, Z.P., Non local damage theory. J. 
Engng. Mech., ASCE, 113(10):1512-1533, 1987. 

38.  Bazant, Z.P., Pijaudier-Cabot, G., Measurement of characteris-
tic length of non local continuum. J. Engng. Mech., ASCE, 
115(4):755-767, 1989. 

39.  Iesan, D., Torsion of micropolar elastic beams. Int. J. Eng. 
Sci., 9:1047-1060, 1971. 

40.  Park, H.C., Lakes, R.S., Torsion of a micropolar elastic prism 
of square cross section. Int. J. Solids Struct., 23:485-503, 1987. 

41.  Jeong, J., Adib, H., Pluvinage, G., Proposal of new damage 
model for thermal shock based on dynamic fracture on the 
brittle materials. Journal of Non-Crystalline Solids, 351(24-
26):2065-2075, 2005. 

42.  Neff, P., Jeong, J., Münch, I., Ramézani, H., Mean field 
modeling of isotropic random Cauchy elasticity versus 
microstretch elasticity. Z. Angew. Math. Phys., 60(3):479-497, 
2009. 

43.  Wu, H.-C., Continuum mechanics and plasticity. Chapman 
and Hall/CRC Press, 2005. 

44.  Pietraszkiewicz, W., Eremeyev, V.A., On natural strain meas-
ures of the non-linear micropolar continuum. International 
Journal of Solids and Structures, 46(3-4):774-787, 2009. 

45.  Pietraszkiewicz, W., Eremeyev, V.A., On vectorially param-
eterized natural strain measures of the non-linear cosserat 
continuum. International Journal of Solids and Structures, 
46(11-12):2477-2480, 2009. 

46.  Rooney, J., A survey of representations of spatial rotation 
about a fixed point. Environment and Planning B, 4(2):185-
210, 1977. 

47.  Guo, Z.-H., Representations of orthogonal tensors. Solid 
Mechanics Archives, 6(4):451-466, 1981. 

48.  Pietraszkiewicz, W., Badur, J., Finite rotations in the descrip-
tion of continuum deformation. International Journal of Engng. 
Science, 21(9):1097-1115, 1983. 

INTEGRITET I VEK KONSTRUKCIJA 
Vol. 11, br. 2 (2011), str. 63–74 

STRUCTURAL INTEGRITY AND LIFE
Vol. 11, No 2 (2011), pp. 63–74

 

73



Infinitesimal Non-Linear Cosserat Theory based on  Infinitezimalna nelinearna teorija Kosera na bazi 
 

INTEGRITET I VEK KONSTRUKCIJA 
Vol. 11, br. 2 (2011), str. 63–74 

STRUCTURAL INTEGRITY AND LIFE
Vol. 11, No 2 (2011), pp. 63–74

 

74

49.  Altman, S.L., Rotations, Quaternions, and Double Groups. 
Clarendon Press Oxford, 1986. 

50.  Atluri, S.N., Cazzani, A., Rotations in computational solid 
mechanics. Achieves of Computational Mechanics and Engng., 
2(1):49-138, 1995. 

51.  Borri, M., Bottasso, C.L., Trainelli, L., On representations and 
parameterizations of motion. Multibody System Dynamics, 
4(2-3):129-193, 2000. 

52.  Geradin, M., Cardona, A., Flexible Multibody Dynamics: A 
Finite Element Approach. Wiley, Chichester, 2001. 

53.  Chroscielewski, J., Makowski, J., Pietraszkiewicz, W., powłok 
wielopłatowych. Nieliniowa teoria i metoda elementów skon’ 
czonych Wydawnictwo Statyka i dynamika. IPPT PAN, 
Warszawa, 2004. (in Polish). 

54.  Münch, I., Wagner, W., Neff, P., Constitutive modeling and 
FEM for a nonlinear cosserat continuum. PAMM, 6(1):499-
500, 2006. 

55.  Münch, I., Ein geometrisch und materiell nichtlineares 
Cosserat-Modell-Theorie, Numerik und Anwendungsmöglich-
keiten. PhD thesis, University of Karlsruhe (TH), October 
2007. (In German). 

56.  Sansour, C., Skatulla, S., A non-linear Cosserat continuum-
based formulation and moving least square approximations in 
computations of size-scale effects in elasticity. Computational 
Mat. Sci., 41(4):589-601, 2008. 

57.  Donea, J., Huerta, A., Ponthot, J.-Ph., Rodrıguez-Ferran, A., 
Encyclopedia of Computational Mechanics, volume 1, Funda-
mentals, Chapter 14. John Wiley and Sons, 2004. 

58.  Jeong, J., Neff, P., Existence, uniqueness and stability in 
linear Cosserat elasticity for weakest curvature conditions. 
Mathematics and Mechanics of Solids, 15(1):78-95, 2010. First 
published on Sep. 17, 2008, doi:10.1177/1081286508093581. 

59.  Lakes, R.S., A pathological example in micropolar elasticity. 
ASME J. Appl. Mech., 52:234-235, 1985. 

60.  Anderson, W.B., Lakes, R.S., Size effects due to Cosserat 
elasticity and surface damage in closed-cell polymethacrylim-
ide foam. J. Mat. Sci., 29:6413-6419, 1994. 

61.  Neff, P., The Cosserat couple modulus for continuous solids is 
zero viz the linearized Cauchy-stress tensor is symmetric. 
Preprint 2409, 
http://www3.mathematik.tudarmstadt.de/fb/mathe/bibliothek/pr
eprints.html , Z. Angew. Math. Mech., 86:892-912, 2006. 

62.  Ramézani, H., Jeong, J., A novel linear cosserat elasticity 
models with grid framework model assumptions: 3d numerical 
experiments of the torsion test. International Journal of 
Mechanical Sciences, May 2009. Submitted. 

63.  Neff, P., Jeong, J., A new paradigm: the linear isotropic 
Cosserat model with conformally invariant curvature energy. 
Z. Angew. Math. Mech., 89(2):107-122, 2009. 

64.  Neff, P., Jeong, J., Fischle, A., Stable identification of linear 
isotropic cosserat parameters: bounded stiffness in bending 
and torsion implies conformal invariance of curvature. Acta 
Mechanica, 211(3):237-249, May 2010. 

65.  Jeong, J., Ramézani, H., Münch, I., Neff, P., Simulation of 
linear isotropic Cosserat elasticity with conformally invariant 
curvature. Z. Angew. Math. Mech., 89(7):552-569, 2009. 

66.  Jeong, J., Ramézani, H., Implementation of the finite isotropic 
linear cosserat models based on the weak form. In Scientific 
committee of European Comsol Conference in Hannover-
Germany, editor, European Comsol Users Conference 2008, 
November 2008. 

67.  Lakes, R.S., On the torsional properties of single osteons. J. 
Biomech., 25:1409-1410, 1995. 

68.  Zastrau, B., Zur Berechnung orientierter Kontinua - 
Entwicklung einer Direktorentheorie und Anwendung der 
Finiten Elemente. Number 4/60 in Fortschrittberichte der VDI 

Zeitschriften. Verein Deutscher Ingenieure, VDI-Verlag 
GmbH, Düsseldorf, 1981. 

69.  Zastrau, B., Rothert, H., Herleitung einer Direktortheorie für 
Kontinua mit lokalen Krümmungseigenschaften. Z. Angew. 
Math. Mech., 61:567-581, 1981. 

70.  de Borst, E., Simulation of strain localisation: a reappraisal of 
the cosserat continuum. Eng. Comput., 8(4):317-332, 1991. 

71.  Forest, S., Dendievel, R., Canova, G.R., Estimating the overall 
properties of heterogeneous Cosserat materials. Modelling 
Simul. Mater. Sci. Eng., 7:829-840, 1999. 

72.  Neff, P., Jeong, J., Ramézani, H., Subgrid interaction and 
micro-randomness - novel invariance requirements in infini-
tesimal gradient elasticity. International Journal of Solids and 
Structures, 46(25-26):4261-4276, 2009. 

73.  Neff, P., Jeong, J., Münch, I., Ramézani, H., Linear Cosserat 
Elasticity, Conformal Curvature and Bounded Stiffness. In 
G.A. Maugin and V.A. Metrikine, editors, Mechanics of 
Generalized Continua. One hundred years after the Cosserats, 
volume 21 of Advances in Mechanics and Mathematics, pages 
55-63. Springer, Berlin, 2010. 

74.  Neff, P., Münch, I., Curl bounds Grad on SO(3). Preprint 
2455, 
http://www3.mathematik.tudarmstadt.de/fb/mathe/bibliothek/pr
eprints.html , ESAIM: Control, Optimisation and Calculus of 
Variations, published online, DOI: 10.1051/cocv:2007050, 
14(1):148{159, 2008. 

75.  Gauthier, R.D., Experimental investigations on micropolar 
media. In O. Brulin and R.K.T. Hsieh, editors, Mechanics of 
Micropolar Media, pages 395-463. CISM Lectures, World 
Scientific, Singapore, 1982. 

76.  Bazant, Z.P., Chang, T.P., Instability of nonlocal continuum 
and strain averaging. J. Engng. Mech., 110:1441-1450, 1984. 

77.  Forest, S., Pradel, F., Sab, K., Asymptotic analysis of hetero-
geneous cosserat media. International Journal of Solids and 
Structures, 38(26-27):4585-4608, 2001. 

78.  Hongwu, Z., Hui, W., Biaosong, C., Zhaoqian, X., Parametric 
variational principle based elastic-plastic analysis of cosserat 
continuum. Acta Mechanica Solida Sinica, 20(1):65-74, 2007. 

79.  Jeong, J., Adib-Ramezani, H., Effect of specimen shape on the 
behavior of brittle materials using probabilistic and determi-
nistic methods. Journal of the European Ceramic Society, 
26(16):3621-3629, 2006. 

80.  Atkinson, C., Smelser, R.E., Sanchez, J., Combined mode 
fracture via the cracked brazilian disk test. International 
Journal of Fracture, 18(4):279-291, April 1982. 

81.  Kirchner, N., Steinmann, P., Mechanics of extended continua: 
modeling and simulation of elastic microstretch materials. 
Computational Mechanics, 40(4):651-666, 2007. 

82.  Nakamura, S., Lakes, R.S., Finite element analysis of stress 
concentration around a blunt crack in a cosserat elastic solid. 
Comp. Meth. Appl. Mech. Engng., 66(3):257-266, 1988. 

83.  Lakes, R.S., Nakamura, S., Behiri, J.C., Bonfield, W., Fracture 
mechanics of bone with short cracks. J. Biomechanics, 23(10): 
967-975, 1990. 

84.  Jeong, J., Ramézani, H., Benboudjema, F., Numerical imple-
mentation of the deformation of drying shrinkage of the 
cement-based materials: Effect of micro structure -cauchy's 
approach or second gradient approach? In Scientific commit-
tee of European Comsol Conference, Milan-Italy 
(http://www.comsol.eu/conference2009/europe/papers/), editor, 
European Comsol Users Conference 2009, 14-16 Oct. 2009. 

85.  Mindlin, R.D., Tiersten, H.F., Effects of couple stresses in 
linear elasticity. Arch. Rat. Mech. Anal., 11:415-447, 1962. 

 

http://www3.mathematik.tudarmstadt.de/fb/mathe/bibliothek/preprints.html
http://www3.mathematik.tudarmstadt.de/fb/mathe/bibliothek/preprints.html
http://www3.mathematik.tudarmstadt.de/fb/mathe/bibliothek/preprints.html
http://www3.mathematik.tudarmstadt.de/fb/mathe/bibliothek/preprints.html
http://www.comsol.eu/conference2009/europe/papers/

	INFINITESIMAL NON-LINEAR COSSERAT THEORY BASED ON THE GRAIN SIZE LENGTH SCALE
	INFINITEZIMALNA NELINEARNA TEORIJA KOSERA NA BAZI DUŽINSKE SKALE VELIČINE ZRNA
	INTRODUCTION
	Development of Cosserat models, motivation and applications
	Paper organization

	MATHEMATICAL FORMULATION OF COSSERAT-BASED SOLIDS
	Cosserat theory kinematics
	Classical kinematics or so-called linearized kinematics
	Geometrically exact kinematics or so-called non-linear kinematics

	Total strain energy density concept and their corresponding constitutive laws
	Centro-symmetric case: anisotropic and isotropic constitutive laws

	Equilibrium equations

	ANALYTICAL EVALUATION OF MATERIAL PARAMETERS IN MICROPOLAR THEORY AND CHARACTERISTIC LENGTH
	General considerations
	Analytical evaluation of curvature energy density using nullspace theory
	Linear Cosserat theory
	Non-linear Cosserat theory 

	Characteristic length scale Lc determination
	Characteristic length scale overview
	Definitions of characteristic lengths and our assumptions


	3D NUMERICAL SIMULATION OF THE ISOTROPIC NON-LINEAR COSSERAT THEORY
	3D-FEM simulation of Modified Brazilian Disk specimens
	Numerical simulation results and discussion

	SUMMARY, CONCLUSION AND OUTLOOK
	ACKNOWLEDGEMENTS
	REFERENCES


