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Abstract 

Reference temperature localizing the fracture toughness 
temperature diagram on temperature axis is predicted 
based on tensile test data. The regularisation neural network 
is developed to solve the correlation of these properties. 
Three-point bend specimens are applied to determine frac-
ture toughness. The fracture toughness transition depend-
ence is quantified by means of the master curve concept 
enabling to represent it by using one parameter, i.e. the 
reference temperature. Tensile samples with circumferential 
notch are also examined. In total 29 data sets from low-
alloy steels are applied for the analysis. A good correlation 
of the predicted and experimentally determined values of 
the reference temperature is found. 

Ključne reči 
• prelaz od krtog u plastično 
• žilavost loma 
• veštačke neuronska mreža 
• čelici 

Izvod 

Lokalizacija temperaturskog dijagrama žilavosti loma 
referentnom temperaturom na temperaturnoj osi je određe-
na na osnovu podataka ispitivanja zatezanjem. Razvijena je 
regularizacija neuronske mreže radi rešavanja korelacije 
ovih osobina. Primenjene su epruvete za savijanje u tri 
tačke za određivanje žilavosti loma. Krto-duktilni prelaz 
žilavosti loma je utvrđen primenom koncepta master krive, 
što je omogućilo prikaz upotrebom samo jednog parametra, 
na pr. referentne temperature. Uzorci za zatezanje sa obim-
skim zarezom su takođe proučeni. Ukupno je za analizu 
upotrebljeno 29 skupova podataka ispitivanja nisko legira-
nih čelika. Pokazuje se dobro slaganje procenjenih i ekspe-
rimentalno određenih podataka referentne temperature. 

INTRODUCTION 

The concept of the master curve is rapidly becoming an 
essential part of the evaluation of brittle fracture behaviour 
of low-alloy steels in various structural applications. This is 
especially visible in the evaluation of changes in transition 
behaviour of steels caused by changes of microstructural 
state, e.g. in the operational degradation of steels in power 
generation. The master curve concept draws purely on an 
engineering basis /1/. It is based on the finding that most 
ferritic steels with yield strength up to 750 MPa are 
characterised by the same shape of the fracture toughness 
transition curve, including the scatter band. The transition 
behaviour characterising the particular steel is then defined 
by the position of this transition curve on the temperature 
axis. A reference temperature T0 is used for the positioning 
of the transition region /1, 2/. The concept can be applied in 
cases when fracture behaviour is controlled by the weakest 
link and fracture toughness characteristics can be described 

by Weibull statistics. The master curve concept has been 
subjected to ongoing verification in solving a range of 
problems (e.g. /3-5/); its functionality has also been confirmed 
under conditions of dynamic loading /6/. To determine the 
reference temperature and the position of the fracture tough-
ness transition curve on the temperature axis, it is essential 
to carry out a minimum number of standard fracture tough-
ness tests. It is often difficult to use these tests for the 
purposes of estimating embrittlement during exploitation 
due to a lack of material /7/. The concept brings one impor-
tant advantage however. To quantify the fracture toughness 
transition, i.e. to determine the master curve and the scatter 
band, only one value, the reference temperature, is neces-
sary to know. This may be determined either experimen-
tally based on standard fracture toughness tests /6/ and/or 
test by applying subsized specimens /8, 9/ or based on 
theoretical considerations /5, 10/. 
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A typical example of a temperature diagram for fracture 
toughness of cast ferritic steel /11/ is shown in Fig. 1. There 
are typical areas of valid fracture toughness characteristics, 
/12/. Almost all values are lying between the lines showing 
the KIc validity limit and KJc validity limit. 
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Figure 1. Fracture toughness temperature dependence with 

reference temperature determination T0. 
Slika 1. Zavisnost žilavosti loma sa temperaturom i određivanje 

referentne temperature T0. 

The non-dashed full (red) curve represents the exponential 
function of the master curve described by the equation, /2/, 

 ( ) 030 70exp 0.019( )Jc medK   T T   . (1) 

The temperature corresponding to median value equal to 
100 MPa·m1/2 of fracture toughness data set in transition 
region is taken as reference temperature T0; for the particu-
lar steel E, the temperature T0 = –147°C. The dashed  lines 
correspond to 90% probability scatter band, described by a 
similar equation as the previous median curve, i.e. 

 (0.05) 025.4 37.8exp 0.019( )JcK T T     (2) 

 (0.95) 034.6 102.2exp 0.019( )JcK T T    . (3) 

Equations (2) and (3) quantify the limits for 5 and 95% 
fracture probability, respectively. 

Despite major progress in the quantification of brittle 
fracture initiation under various loading conditions, one 
specific problem has not been addressed fully: the reliable 
determination of fracture toughness reference temperature 
when using specimens other than standard precracked ones. 

Artificial neural networks (ANN) have proved to be 
powerful and attractive in solving complex problems of 
materials science /13, 14/. It is appropriate to attempt neural 
network analysis when a problem is so complicated that a 
rigorous treatment is impossible or supplying uncertain 
unambiguous results and yet a quantitative treatment is 
needed /4/, e.g. for transition behaviour prediction. A few 
studies in this area have shown that neural analyses enables 
a model to be found which has undergone the prediction of 
e.g. impact energy with a relatively high degree of accuracy 
/15, 16/. Quite reliable prediction is obtained for fatigue 
crack growth rate from tensile properties, /17/. A few 
attempts have been also carried out relating the processing 

variables with fracture characteristics /17, 18/ and/or selected 
mechanical properties /19-22/. A single characteristic, i.e. 
reference temperature, carrying the needed information on 
fracture behaviour and capable to quantify all the fracture 
toughness temperature dependence brings the opportunity 
to predict this quantity by ANN selection and training a 
satisfactory number of input data sets. 

The aim is to determine the usability of neural analysis 
for the prediction of transition behaviour of ferritic steels, 
as well as to highlight the problems connected with this 
method. The paper presents the first findings in this area; 
and though the research is still underway, the findings 
presented here are quite original and promising. 

ARTIFICIAL NEURAL NETWORKS 

During adaptation process (learning), the artificial neural 
networks are capable of extracting from complete data sets 
the correlations between the structure of training objects 
and their properties /23, 24/. It has even been theoretically 
proved that there is an universal approximator, i.e. any non-
conflicting training set is ANN containing at least 2 layers 
of hidden neurons learnable with the required accuracy. For 
the application discussed here, the ANN contains 3 layers 
(Fig. 2). The input layer consists of input neurons, which 
play a formal role and do not carry out any calculations – it 
is via these neurons that the network receives external 
information – input activities x1, x2, x3, x4 etc. The second 
layer contains hidden neurons, which are connected to the 
input neurons in various ways. The upper layer contains the 
output neuron, whose activity y1 represents the output of the 
network. The output neuron is connected to the hidden 
neurons in various ways. Each connection i-j is evaluated 
with a weight coefficient wij. Analogously, each hidden or 
output neuron i is evaluated with a threshold i. 

 
output layer 
 
 
hidden layer 
 
 
input layer 

 
Figure 2. Typical architecture of three-layer neural network. 

Slika 2. Tipična arhitektura troslojne neuronske mreže. 

In the following stage, during the active process, the 
ANN also classifies objects that are not included in the 
training set, and the results gained – i.e. the response of the 
ANN – are compared with experimental data. This stage 
verifies the network’s ability to generalise the data contained 
in the training set. Practical experience has shown that 
ANN give results that are more stable than those produced 
for complicated data sets by standard regressive models of 
mathematical-statistical analysis. The effectiveness of the 
ANN application depends heavily on the creation of the 
training data set which forms the basis of the adaptation 
process (Fig. 3), /25/. This set must contain objects, their 
descriptors and the required classification selected from 
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experiments. Most commonly used for this purpose are 
mathematical-statistical methods of data pre-processing or 
artificial intelligence techniques such as clustering methods 
using fuzzy logic. The centres of clusters are formed by the 
objects of the training set; all other objects form the testing 
set. It is assumed that ANN adapted using objects from the 
training set is capable of such a level of generalization that 
it can also adequately interpret objects from the testing set. 
This ensures that the training set contains typical represen-
tatives (centres) of each cluster. 

 
Figure 3. Separation of data sets into two disjoint sets – 

training/learning and testing ones. 
Slika 3. Razdvajanje data skupova u dva odvojena skupa – 

treniranje/učenje i ispitivanje. 

Objects in the training set will strongly influence the 
success of predictions of the output object. The training set 
must be formed of data sets all taken from the same mate-
rial; data extracted from publications can lead to incorrect 
algorithms in the hidden layer of the ANN. 

MATERIALS USED 

The material used for testing is of various origins. For 
the purposes of the project a total of 29 steels and states of 
steel of the following types are collected: 
– Arema steel and ferritic cast steels (labelled as A, S, C, E); 
– low-carbon low-alloy CrMoV steels commonly used e.g. 

for rotors of steam power generations, in states following 
operational exposure (c, d, F, G); 

– low-allow (Cr)NiMo(V) steels in original state and follow-
ing operational exposure (s, t, M,V, D); 

– advanced steels for thick-walled forgings (K, L); 
– ferritic weldable sheet steels (N, O, p); 
– nuclear reactor pressure vessel steels in basic state and 

model states (J, X, Y, Z); 
– boiler and pipe steels with increased strength (T, I, H, a); 
– pearlitic and bainitic steels applied in railway compo-

nents (P, B, R). 

TEST SPECIMENS AND METHODS 

To determine fracture toughness, in most cases standard 
test specimens are used, with dimensions 2550240 mm 
and demonstrably from a single semi-finished product. The 
specimens are positioned so that the crack propagation 
plane corresponds with real loading conditions. In justifi-
able cases, especially due to the limited size of the semi-
finished product, CT type specimens are also used. The 
testing and evaluation of fracture toughness is carried out in 
accordance with the standards /26, 27/. 

To determine the reference temperature T0, at least 7 
valid fracture toughness values KIc or KJc are needed. In 
most cases the T0 temperature is calculated applying the 
multi-temperature method. In justifiable cases the reference 
temperature T0 is determined by single-temperature method. 
Details of both methods are described in ASTM E 1921 
standard, /2/. 

After carrying out the fracture mechanics tests, the frac-
tured specimen halves are used to produce smaller speci-
mens for tensile testing with smooth and notched bars. 

For purposes of standard tensile tests, 6 mm diameter 
bars are used. Standard strength and deformation properties 
are determined. In addition, properties are determined that 
are expected to display a strong direct (physical) correlation 
with the fracture behaviour of cracked specimens and the 
predicted reference temperature. These properties are true 
stress σm, σu and true strain values εpn, εu at the beginning of 
plastic instability and at fracture. For these values the slope 
of a line characterising the tensile diagram beyond the 
plastic instability limit is suggested as one of the new 
parameters and calculated using the equation 

 tg u m

u pn

 


 





. (4) 

Tensile test specimens with circumferential notches are 
also included into analyses. The geometry of the test 
specimen is developed to ensure that even in the toughest 
materials, embrittlement occurred at temperatures higher 
than the temperature of liquid nitrogen, for details see /28/. 

The objective of the tests is to determine the general 
yield temperature Tgy for the given test specimen geometry 
and quasistatic loading conditions. The general yield tem-
perature is determined as temperature at which fracture 
occurs at the moment of the first macroplastic deformations 
below the notch, i.e. the temperature at which the fracture 
stress coincides with general yield stress acting in the test 
specimen cross-section below the notch root. Additionally, 
the nominal fracture stress Ru is determined from a load at 
fracture Fu and corresponding area Su in the narrowest 
location of the bar: 

 u
u

u

F
R

S
  [MPa]. (5) 

The total relative elongation – A* is determined for the 
unstable fracture of the notched bar 

 * 0

0

100uL L
A

L


   [%], (6) 

where L0 and Lu are specimen gauge lengths, the initial one 
and at fracture, in respect. Similarly, the total reduction of 
area at the narrowest location on the bar, Z*, 

 * 0

0

100uS S
Z

S


   [%] (7) 

is determined for initial area and area at fracture, S0 and Su. 
All above mentioned characteristics are determined for 
general yield temperature (purely brittle fracture) and room 
temperature (purely ductile temperature). 
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RESULTS 

The above experiments produced data sets comprising 
over 1100 values. Partial data analyses are carried out 
during the course of measurement, mainly on the basis of 
temperature dependences of the evaluated characteristics 
and the comparisons of steel performance with analogous 
microstructure. These analyses led to repeated measurement 
or the (temporary) rejection of 5 steels from subsequent 
analyses as already mentioned. 

One of the key tests is the determination of reference 
temperature T0. (For the selected steel a correlation of 
measured data and curves obtained by means of master 
curve methodology is shown in Fig. 1). In addition to the 
evaluation of fracture toughness temperature diagram, 
Fig. 4 shows the dependence of fracture toughness on 
normalized temperature for the investigated steels. The 
figure supplies evidence for the validity of determining the 
reference temperature and the validity of the master curve 
concept for most steels. Analyses proved that the deter-
mined reference temperature can be considered entirely 
reliable; practically all fracture toughness values lie within 
the (90% probability) scatter band. Only steels Y and Z 
showed anomalous distribution of values in the band; how-
ever in these steels coarse-grained structure is simulated 
and the fracture is intercrystalline, i.e. in such cases the full 
validity of the master curve was not expected. 

 
Figure 4. Fracture toughness temperature dependence for all 

investigated steels in 90% probability scatter band. 
Slika 4. Zavisnost žilavosti loma od temperature za sve ispitivane 

čelike, sa verovatnoćom rasipanja 90%. 

One of the main intentions was to include the tensile 
specimens with circumferential notches into the analyses in 
order to test the behaviour of the neural network in relation 
to failure mechanism transition. Only with bars of the 
selected geometry was it possible at a single quasistatic 
loading rate to reach two limit mechanisms – transcrystal-
line cleavage and ductile tearing. At the reference tempera-
ture in order to get on the output side of the neural analysis 
there is a predominant occurrence of transcrystalline cleav-
age fracture, in some cases with small areas of ductile 
fracture and ductile fracture pre-cracking preceding to 
cleavage. One of the expected properties of artificial neural 
network should be its ability to predict the parameter 

corresponding to the transition area from limit parameters 
corresponding with lower and upper threshold values. For 
this purpose, the selected property of pure cleavage fracture 
is the critical brittleness temperature determined as the 
temperature of coincidence of fracture force and force at the 
limit of macroplastic deformations. Fracture data deter-
mined at this temperature are then used as input parameters 
for neural analysis. 

In testing the accuracy of the determination of this 
temperature, it is interesting to compare this general yield 
temperature (for notched tensile test bars) with the 
reference temperature (determined on the basis of fracture 
toughness measurement); this is summarized in Fig. 5. The 
solid line shows the linear dependence gained by regression 
analysis (with the correlation coefficient 0.85). The correla-
tion of both values is quite evident, but it was no ambition 
of authors to analyse this more deeply in this study. Only in 
cases where the ANN showed a remarkable deviation 
between the predicted and experimentally determined 
reference temperatures was this correlation used to discover 
whether the deviation was caused by some error in experi-
mental determination of data. 

 
Figure  5. Correlation of reference temperature and general yield 

temperature of notched tensile test specimens. 
Slika 5. Korelacija referentne temperature i temperature opšteg 

tečenja za zatezne epruvete sa zarezom. 

Because of limited number of data sets and high number 
of parameters on the input side, the analysis is carried out in 
several stages: (i) The selection of suitable input attributes 
(i.e. those parameters on whose basis the reference tem-
perature was to be predicted). Stochastic optimisation 
methods are applied for this purpose. (ii) The selection of 
steels for the training set and for verification of the ANN 
mostly based on analysis of preliminary results (empirical 
approach). (iii) The final processing of the training set by 
regularisation neural network and the final reference 
temperature prediction test. 

Analyses showed reliably which input parameters unam-
biguously influence the prediction of reference temperature. 
On the input side, 25 different properties of the above-
mentioned mechanical tests are investigated; in addition 
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attributes of microstructure, hardness and instrumented 
indentation tests are included to these. Some of the parame-
ters are duplicated on the input side (e.g. true fracture stress 
corrected and uncorrected for triaxiality). Nevertheless, the 
notched bar tensile test and the general yield temperature 
proved to be exceptionally significant. The best prediction 
is achieved by simultaneously using the tensile strength at 
room temperature, yield strength and true fracture strain at 
critical brittleness temperature. A surprising result is that in 
smooth bars, local material properties such as true fracture 
strain or slope of line beyond the plastic instability limit do 
not belong among the descriptors with a significant influ-
ence on prediction. 

The steels providing the worst prediction of reference 
temperature are identified in two stages. In total, 5 steels (F, 
Z, c and, in addition p, A) are progressively rejected from 
the analyses. This step improved prediction accuracy by 
10%. The justifiable reason for their rejection is the devia-
tion in the fracture behaviour of the mentioned steels in the 
analysed set. This hypothesis is based on the fact that the 
analysed set of steels is relatively small, and so the neural 
network used was relatively simple. It is a justifiable 
assumption that increasing the quantity of input data (i.e. 
sets of mechanical parameters of steels included in the 
investigation) and using a more complex ANN will improve 
the network’s ability to generalize, and that it will be possible 
to predict the reference temperature for the currently prob-
lematic steels with greater accuracy. Following the rejection 
of the 3 steels, the significance of the descriptors in the 
prediction also changed, however the analysis confirmed 
the exceptional significance of the tensile test with circum-
ferential notched bars and general yield temperature for 
these specimens. Among the 100 best predictions (gener-
ated for different combinations of input parameters), not 
one failed to include at least one of the following descrip-
tors: general yield temperature Tgy, nominal fracture stress 
Ru, or reduction in area of notched bars Z*. 

A limiting factor in the data processing is the limited 
number of data sets in the training set. This problem is 
addressed by selecting a prediction model that is suitable 
for small training sets – regularization neural networks. 
Additionally, the data sets are not divided into the usual 
training and testing sets as is common (see heading 2); this 
problem is solved by using an iterative division method, i.e. 
each training set progressively became a testing set. 

Figure 6 shows the results of prediction using neural 
networks, progressively optimised both by modification of 
the input data set and by the selection of attributes. The 
deviation of predicted and measured reference temperatures 
lies within a relatively narrow interval. In individual cases 
this deviation approaches an error in the determination of 
reference temperature. On the basis of the above-described 
analyses and results, it can be claimed that the prediction of 
fracture toughness on the basis of reference temperature 
predicted from other mechanical tests is essentially possi-
ble. The priority task for further optimisation of the proce-
dure is the expansion of the set of steels, which will make it 
possible to improve accuracy and reliability to the level 
required for industrial applications. 

 
Figure 6. Comparison of reference temperature T0 predicted by 

ANN and determined by experimental measurements. 
Slika 6. Poređenje referentne temperature T0 procenjene putem 

ANN i određene eksperimentima. 

CONCLUSION 

On the basis of the results achieved, it can be stated that 
the reference temperature characterizing fracture toughness 
transition behaviour in low-alloy steels with predominantly 
ferritic structure is predictable on the basis of selected 
characteristics of tensile tests. 

A limiting factor in the data processing is the small 
number of data sets in the training set. This problem is 
addressed by selecting a prediction model that is suitable 
for small training sets – regularization networks. Addition-
ally, the data sets are not divided into the usual training and 
testing sets (see Introduction); this problem is solved by 
using an iterative division method, i.e. each training set 
progressively became a testing set. 

In view of the highly positive results of the prediction of 
reference temperature, it is recommended to double the set 
of parameters, which would certainly lead to an improve-
ment in the accuracy of reference temperature prediction 
and a reduction in the number of input parameters. It would 
also enable the neural network-based prediction model to 
be tested using learning based on back propagation of error; 
one of the advantages of this method is its better capability 
of generalization and prediction of output values and its 
lower sensitivity to the set of input parameters used. 
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