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Abstract 

Since several years, the trends to designing structures 
are towards probabilistic design more than deterministic 
design. This is based on the fact that a null risk does not 
exist. Engineers now prefer to speak in terms of probability 
of failure. This means that a given risk of failure is 
accepted. In counterpart, a cheaper structure is expected. 

The problem is in determining the pertinent failure 
criterion and the corresponding random input variables. If 
the laws of distribution of mechanical properties are 
generally well known, it is more difficult to have those 
representing the type and size of defects, or loading. Some 
experiments should be done to obtain the desired data. 

There are several reliability indexes that are presented 
in this work. We will focus with the following on the 
Hasofer and Lind’s index, that exhibits some theoretical 
advantages in conjunction with easiness of computation. 

Four methods of computation are presented: a “black 
box”, associated with finite elements software, a numerical 
method implemented with the help of symbolic computation 
software, the same but operating with a spreadsheet and 
the well-known Monte-Carlo method. A calibration test and 
an example have been treated with these methods and the 
results are compared in terms of precision, speed, easiness 
of programming and cost. 

Ključne reči 
• konstrukcije 
• pouzdanost 
• pokazatelj pouzdanosti 
• numeričke metode 
• verovatnoća otkaza 
• Hasofer-Lindov pokazatelj 

Izvod 

Već više godina trend u projektovanju konstrukcija je 
više usmeren na probabilističke nego na determinističke 
metode. Razlog je činjenica da rizik uvek postoji. Zbog toga 
inženjeri danas rađe govore o verovatnoći loma. To znači 
da je prihvaćeno postojanje određenog rizika od loma. U 
tom smislu očekuje se jeftinija konstrukcija. 

Problem je da se odredi pogodan kriterijum otkaza i 
odgovarajući unos slučajnih podataka. Ako je zakonitost 
raspodele mehaničkih osobina načelno dobro poznata, 
mnogo je teže vladati onim zakonima koji predstavljaju 
vrstu greške, veličinu greške, ili opterećenje. Da bi se dobili 
željeni podaci, potrebno je izvesti određene eksperimente. 

U ovom radu su prikazani neki pokazatelji pouzdanosti. 
U daljem tekstu će pažnja biti usmerena na Hasofer i 
Lindov pokazatelj, koji ima izvesne teorijske prednosti a 
povezane su sa pogodnošću proračuna. 

Prikazane su četiri metode proračuna: „crna kutija“, 
koja je povezana sa softverom konačnih elemenata, jedna 
numerička metoda koja je uvedena pomoću proračunskog 
softvera simbolima, ista takva koja koristi tabelu podataka i 
poznatu metodu Monte-Karlo. Test kalibracije i jedan 
primer su razmotreni pomoću ovih metoda, a rezultati su 
upoređeni u pogledu preciznosti, brzine, jednostavnosti 
programiranja i cene. 

INTRODUCTION 

Since several years, design codes are changing from 
deterministic to probabilistic design. This trend is clearly 
illustrated in Fig. 1, /1/. It shows that, when knowing a 
function of variables, which is defined as a failure criterion, 
in the space of these variables this function defines two 
zones: the “safe zone” and the “failure zone”. If variables 
have determined values, the deterministic approach clearly 
separates the non-dangerous variable combinations from 

dangerous ones. In general, variables are mainly mechani-
cal characteristics, which are subjected to some variability. 
Consequently, the deterministic approach is no more valid, 
and a probabilistic approach should be implemented. In 
Fig. 1, a third “security zone” is clearly seen, where the 
probability of failure is practically zero. Between the failure 
zone and security zone, in the safe zone, there exists some 
probability of failure, which should be computed. 
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When defining the failure criterion function, there are 
two kinds of variables: fixed variables with a unique va
an

rocedure, the other on the 
co

paper. Differences are found 
bet

lue, 
d random variables, the values of which are depending on 

a particular probability density. 
Two main processes can be examined. One is based on 

the well-known Monte-Carlo p
mputation of an index of reliability. Transformation from 

the index of reliability to probability of failure is possible as 
these two quantities are related together by a Normal Distri-
bution probability function. 

Both procedures and the numerical processes associated 
with are presented in this 

ween them and tentative explanations are proposed. It is 
therefore necessary to determine a procedure to estimate the 
probability of failure. 

 
Figure 1. Failure Assessment Diagram with three zones, /1/. 

Slika 1. Dijagram analize loma sa tri zone, /1/ 

TH

e-Carlo procedure 
, /2/, in 1949. In its 
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 variables as input data and which 
sh

 two vari-
lying 

table results it is 

omputations are not very difficult, but may be 
ex

DS 

 are defined. It is 
ne

 a set of 
va

S Σ  (1) 

 the criterion. This can b

E MONTE-CARLO PROCEDURE 

The first paper speaking about Mont
was published by Metropolis and Ulam

nciple, it is quite simple: for a given problem implying 
random variables, with a binary solution (e.g. True or 
False), this result is computed for a large set of random 
variables and the probability of success (here True, for 
instance), is the number of sets giving True over the total 
number of sets tested. 

For instance, we consider the problem of a quantity 
computed from random

ould not exceed a critical value. To obtain the probability 
of fracture, it is just necessary to generate a large amount of 
sets of input variables and then to compute and test the 
criterion, the ratio of sets leading to fracture over the total 
amount of sets being this probability of fracture. 

However, two main limits with this technique are: 
– If there is some natural correlation between

ables, or some physical constraint, only sets comp
with these conditions should be considered. This could 
imply some programming difficulties and reduce the 
total amount of data sets actually used. 

– If the expected probability is very low (for instance, less 
than 10–7, in order to obtain relatively s
necessary to compute the ratio with, at least, more than 
108 valid sets of data. Moreover, with such low probabil-

ity, it is necessary to test the variability and scatter of the 
result. 
These c
tremely computer time consuming. 

THE RELIABILITY INDEX METHO

There are several reliability indexes that
cessary first to recall what a reliability index is. 
The state of a structure can be defined from
riables which define a criterion. For instance, if the 

strength S and the stress Σ in a point of a structure are 
given, the equation: 
 

is n as: e writte
 0M S Σ    (2) 

nd if the left side

s, the state function M is com-
pu

 

a re is fracture. Giving  is negative, the
randomly distributed S and Σ strength and stress, there are 
sets that give fracture and others do not. Equation (2) is 
called “state function” and we will focus on the probability 
that this function is positive, i.e. the structure is safe. From 
the statistical distribution, values of M quantities called 
“reliability indexes” are derived. 

Cornell’s reliability index 

For each set of variable
ted and, therefore, an expected value (mean value) E(M) 

and a standard deviation V(M)0.5 are computed. When the 
distribution of each random variable is normal, the distribu-
tion of the state function M is expected to be also a standard 
normal one. Cornell’s reliability index is expressed in terms 
of the ratio: 

1/2( )
c

V M
 

ted in Fig. 2:

( )E M
 (3) 

This index is presen  g0 is E(M) and σg is 
V(M)1/2. Probability of fracture Pf is given in the figure. 

 
Figure 2. Representation of the c reliability index, /3/. 

Slika 2. Prikaz c indeksa pouzdanosti, /3/ 

Hasofer-L

esents a lack of invari-
an

 

ind’s reliability index, /4/ 

But, Cornell’s reliability index pr
ce with respect to the formulation of the state function. 

This can be solved by computing the index at a “design 
point” instead of the mean values that were used in 
Cornell’s index. This “design point” should be determined 
by an iteration technique, working in the space of trans-
formed standard random variables. 

i

i i
i

x

x x
z


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Hasofer-Lind’s reliability index is therefore defined as 
the shortest distance between the origin of reduced variable 
space and the limit state function, as shown in Fig. 3. 

 
Figure 3. Definition of Hasofer-Lind’s index in bi-dimensional 

space, /4/. 
Slika 3. Definicija Hasofer-Lindovog pokazatelja u 

dvodimenzionalnom prostoru, /4/ 

The mathematical process to compute this index consists 
in an optimization procedure to determine the minimum 
distance between origin and state function. Constraints in 
this procedure are such that data sets should verify the limit 
state function. Moreover, in order to avoid problems due to 
the eventual existence of several local minimums, it is 
recommended to define a domain of validity for each 
variable. But this does not completely avoid the problem. 

Of course, in the example given in Fig. 4, there are only 
two variables, and the distance from the origin of reduced 
variables to the limit state function (a curve) is clearly 
visible. In a general case of n variables, the limit state 
function is a surface in the n-space and Hasofer-Lind’s 
index is the distance from origin to that surface. 

As the βc Cornell’s index, the βHL Hasofer-Lind’s index 
is related to the probability of failure by a relationship: 

  1f HLP    (5) 

where Φ is a cumulative density function (CDF) of the 
normal standard distribution. This distribution can be used, 
as the random variables have been normalized. Extensive 
details on these computations can be found in /5/. 

COMPUTATION TOOLS 

As mentioned before, two kinds of computations have 
been done: 
– Monte-Carlo method, i.e. direct computation of the prob-

ability of failure; 
– Hasofer-Lind’s index, using a FORM (First Order Reli-

ability Method). 
In both cases, a comparison will be established using 

either Hasofer-Lind’s index, or the probability of failure. 
For the Monte-Carlo method, we have used the Mathe-

matica® software published by Wolfram Company. For the 
Hasofer-Lind’s index computation, we used three different 
tools: 
– A built-in tool from the Cast3M® finite elements pro-

gramme published by the French Atomic Energy Agency 
(CEA), also uses a built-in optimization procedure. 

– Mathematica® software, using a built-in minimization 
function (FindMinimum). 

– Excel® software, by Microsoft Company, using the 
built-in “Solver” function. 

Validation procedure 

For both methods and for all tools, it has been necessary 
to write a specific programme or process, and a validation 
of these programmes is needed. To achieve this, an example 
given by the Castem documentation has been used. It is a 
simple problem of tensile fracture of a homogeneous 
cylinder. The data are the net section of the cylinder, the 
applied load, and strength. 

The limit function, in this simple case is: 
 0u P    (6) 

where A is the net section, σu the strength, and P the applied 
load. 

Random variables are the applied load and strength. Data 
are summarized in Table 1. 

Table 1. Validation data for a cylinder submitted to tension. 
Tabela 1. Podaci za ocenu cilindra izloženog zatezanju 

Net section Load Strength  
m2 MN MPa 

Mean/given value 0.42 70 272.72 
Standard deviation – 15 16.36 

Results of performed computations are given in Table 2. 
It can be seen that all methods approximately give quite 

the same result. This validates the four methods and allows 
us to use them for more sophisticated computations. It 
should be noticed that the Monte-Carlo, Mathematica and 
Excel methods all run on the basis of the generation of 
several sets of random data. Consequently, from one 
computation to another, the result is slightly different, and 
results given here are actually mean values of five computa-
tions. For each method, individual results are very close 
together. The mean value, standard deviation and standard 
error are given in Table 3. Although the errors remain low, 
it should be noticed that the probability of failure is about 
10 times higher as that of Hasofer-Lind’s index. 

Table 2. Comparison between the different computation methods 
for reliability assessment. 

Tabela 2. Poređenje različitih računskih metoda za ocenu 
pouzdanosti 

 Monte-Carlo Castem Mathematica Excel 

Probability of 
failure, Pf 

3.414·10–3 3.470·10–3 3.369·10–3 3.489·10–3

Hasofer-Lind’s 
index, HL 

2.7051 2.6997 2.6962 2.6980 

Table 3. Comparison of results for the tensile test. 
Tabela 3. Poređenje rezultata ispitivanja zatezanjem 

 Mean Standard deviation Standard error
Probability of 

failure, Pf 
3.436·10–3 5.45802·10–5 1.6% 

Hasofer-Lind’s 
reliability index 

2.6998 0.0038 0.1% 
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APPLICATION TO A CRACKED TUBE 

 

These methods have been applied to the problem of a 
cylindrical tube under internal pressure and exhibiting a 
semi-circular external and axial crack. The crack in the wall 
of the pipe is presented in Fig. 4. Tube dimensions are: 
inner diameter 219.1 mm, wall thickness 6.1 mm. Figure 4. Definition of an axial semi-circular crack in the wall of a 

cylindrical pipe. Other data are given in Table 4. 
Slika 4. Definicija aksijalne polukružne prsline u zidu cilindrične 

cevi
To perform the computation, the internal pressure is 

needed. Four values are chosen: 21.5, 23, 24 and 25 MPa. 

Table 4. Input data for random variables. All distributions are Gaussian. 
Tabela 4. Ulazni podaci za slučajne promenljive. Sve raspodele su Gausove 

Crack depth Yield stress Ultimate tensile strength Plane strain fracture toughnessData for 
Standard Normal Distribution a, mm σy, MPa σu, MPa K1c, MNm–3/2 

Mean value 3.0 410.0 528.0 121.0 
Standard deviation 0.3 41.0 52.8 12.4 

Limit function f(Lr) represents the limit function, and is equal to: 
Fracture analysis of the cylinder is achieved with 

SINTAP proposed by Gubeljak, /6, 7/. The relationships for 
the default level are used: 

   app
r r

Ic

K
f L k

K
   (8) 
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Kapp is the applied stress intensity factor, and K1c is the criti-
cal stress intensity factor (plane strain fracture toughness). 

For an axial external semi-circular crack, the maximum 
applied stress intensity factor is given by /8/: 

for 1  with r rL L 
2.5

max 150
1r
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  is a shape factor, including the cur-

vature effect. In our case, this factor is estimated to 0.675. 
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r r r

f

L L L



   and 
2

y u
f

 



  is the flow 

stress, u being the ultimate stress. The resulting failure assessment diagram is presented in 
Fig. 5. The limit function is therefore: 
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As indicated before, results are given both in terms of 
Hasofer-Lind’s index and probability of failure. They are 
presented in Fig. 6. The results are also summarized in 
Table 5Table . Finally, the results are also analysed, for 
each hoop stress, in terms of mean, standard deviation and 
standard error (Table 6). 

It can be seen that the standard error for both HLI and Pf 
decreases with increasing hoop stress. But, if this error is 
reasonable for HLI, it is quite important in terms of Pf. In 
the case of the first line, if we do not take into account the 
result from the Monte-Carlo method, we obtain the results 
given in Table 7. 

Figure 5. Presentation of the f(Lr) function. 
Slika 5. Prikaz funkcije f(Lr) 
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Figure 6. Hasofer-Lind’s Index and probability of failure for different methods of computation. 

Figure 6. Hasofer-Lindov pokazatelj i verovatnoća otkaza za različite metode proračuna 

Table 5. Results of computations in terms of Hasofer-Lind’s index (HLI) and probability of failure (Pf). 
Tabela 5. Rezultati proračuna u zavisnosti od Hasofer-Lindovog pokazatelja (HLI) i verovatnoća loma (Pf) 

 Monte-Carlo Castem Mathematica Excel 

Hoop stress, MPa HLI Pf HLI Pf HLI Pf HLI Pf 

386.1 4.9180 4.75E-07 5.7863 3.60E-09 5.3769 3.79E-08 5.3879 3.57E-08 

413.1 4.3408 7.13E-06 5.0826 1.86E-07 4.8008 7.97E-07 4.6872 1.39E-06 

431.1 3.9757 3.51E-05 3.8791 5.24E-05 4.3591 6.70E-06 4.2670 9.92E-06 
449.0 3.6137 1.50E-04 3.6736 1.20E-04 3.9202 4.42E-05 3.9152 4.52E-05 

Table 6. Mean value, standard deviation (SD) and standard error (SE) between the different methods for each applied hoop stress. 
Tabela 6. Srednja vrednost, standardna devijacija (SD) i standardna greška (SE) različitih metoda za svaki primenjeni obimski napon 

HLI Pf Hoop stress 
MPa mean SD SE mean SD SE 
386.1 4.2938 0.3549 8.27% 1.38E-07 2.05E-07 148% 

413.1 3.7823 0.3069 8.12% 2.38E-06 2.97E-06 125% 

431.1 3.2962 0.2292 6.95% 2.60E-05 2.21E-05 85% 

449.0 3.0245 0.1601 5.29% 8.99E-05 6.14E-05 68% 

Table 7. Mean value, standard deviation (SD) and standard error (SE) for the first case without Monte-Carlo computations. 
Tabela 7. Srednja vrednost, standardna devijacija (SD) i standardna greška (SE) za prva tri slučaja bez Monte-Karlo proračuna 

HLI Pf Hoop stress  
MPa Mean SD SE Mean SD SE 
366.1 5.5170 0.2333 4.23% 2.57E-08 1.92E-08 75% 

It is obvious that scattering of results is decreased. This 
is explained by the fact that our computer configuration 
allows us to make computations only for 107 sets of data, 
and the result is probably erroneous for the Monte-Carlo 
method at such low probability of failure. 

However, it should be observed that the obtained prob-
ability of failure is, in any case, subjected to high variability. 

CONCLUSION 

It has been shown that the probability of failure of a 
defective structure can be evaluated using several different 
methods, either directly with a Monte-Carlo method, or 
indirectly with the help of Hasofer-Lind’s index. A simple 

testing case gives quite good and homogeneous results. 
However, application to a cracked piped shows large scat-
tering of results, particularly for the probability of failure. 
This is probably due to the fact that computed probability 
of failure is rather low, comparing to the calibration 
example. However, the Monte-Carlo method, Mathematica 
and Excel computations are very simple routines to write 
and to use. The Castem routine needs special knowledge of 
the Castem software. 

For practical use, it is recommended to be very careful 
when computing in the domain of very low probability of 
failure. 
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