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Abstract 

In this paper King’s line spring model for surface cracks 
is analyzed and it is shown that interesting relations can be 
derived starting from analytical expressions of the model. 
King’s model is compared with the line spring model of 
Rice and Levi. Significant similarities between two models 
are shown, but King’s model extends the application of the 
approach to elastic-plastic region. FAD based on EPRI 
approach and SINTAP method are also analyzed. 

Ključne reči 
• model opruga u nizu 
• prslina 
• lom 
• konzervativnost 
• elastično-plastična oblast 

Izvod 

U ovom radu je analiziran Kingov model opruga u nizu 
za površinske prsline i pokazano je da se, polazeći od 
analitičkih izraza datih u modelu, mogu izvesti interesantne 
zavisnosti. Kingov model je upoređen sa modelom opruga u 
nizu Rajsa i Livia. Pokazane su značajne sličnosti ovih 
modela, ali Kingov model proširuje primenu pristupa na 
elastično-plastičnu oblast. Analizirani su i FAD zasnovan 
na EPRI pristupu, kao i SINTAP method. 

INTRODUCTION 

Significance of surface cracks, frequently present in 
structural components, can be evaluated by fracture tough-
ness if stress state and materialal data are known. 
Generally, exact solution of the problem is not avialable 
and experimental, numerical and approximate analytical 
methods of fracture mechanics are applied. 

Fracture toughness is usually presented by the stress 
intensity factor (SIF) for given flawed component assuming 
tension and/or bending load and small scale yielding. As a 
measure of stress magnitude at the crak tip, SIF in linear 
elastic fracture mechanics (LEFM) is dependent on crack 
and component geometry. Fracture toughness can be also 
expressed by J integral, path independent, given in unit of 
force per unit of length. Being path independent, J integral 
value is affected by crack and component geometry. 
Critical J value at the initiation of stable ductile crack 
growth, JIc, is a measure of plane strain fracture toughness. 

Experimental investigation of single-edge-notched bend 
(SEN-B) specimens has revealed some typical dependences 
of J integral on strain and crack size. In the elastic region J 
integral is the parabolic function of strain and beyond it is a 

linear function. The slope of the linear parts of J vs. strain 
curve depends on crack size. In contrast to bending, the 
slope for a large crack in tension is weakly dependent on 
crack size /1/. Corresponding value of applied J integral is 
large because applied strain is transmitted in full through 
material and is added to the strain field ahead of crack. This 
behaviour is described as net section yield, /2/. For very 
short crack (up to 1 mm) displacements imposed at speci-
men ends in testing contribute only slightly to the strain 
field ahead of crack, because they are absorbed as plastic 
strain along specimen length, thus producing small applied 
J values. This behaviour is described as gross section 
yielding. The crack is considered here as long if its 
length/depth ratio is ten or more, and for short crack this 
ratio is below five. 

One of the most useful engineering methods is by no 
doubt the continuous line spring, or the line spring model 
(LSM). Established in /3/, it has been applied for plates and 
shells with success. The LSM basic concept, attributed to 
Irwin, is that the uncracked portion of the ligament is 
replaced with a through-crack of equal length as the surface 
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crack with unknown membrane forces and bending 
moments acting on through-crack surfaces. The LSM 
version simplified by King, /4/, has been applied in the 
analysis of surface cracks in large spherical storage tank 
weldments and pipelines for fitness-for-service assessment, 
/5, 6/, and was compared with experimental results, /4, 6-8/. 
The conservatism of SIF applied by King’s model for short 
cracks of moderate depth in plates was investigated here by 
comparing calculated SIF values with detailed three-dimen-
sional finite element solutions of Raju and Newman. Linear 
dependence of J integral on crack opening displacement 
(COD) is experimentally shown, /9/, in accordance with, 
also experimentally, linear dependence of COD on remote 
stress, /1/, and remote strain, /10/, in an extended elastic 
plastic region. Linear relations between J integral and crack 
tip opening displacement (CTOD) are also derived here by 
applying King’s model. 

THE LINE SPRING MODELS 

The line spring model is an effective tool for evaluating 
SIF in the case of LEFM. In this way, the three-dimensional 
crack problem is made analytically tractable. The other 
approximation is the representation of component by a plate 
or a shell in order to suppress the coordinate in the 
thickness direction using plate or a shell theory. 

The LSM model for part-through crack in a plate 
enabled approximate solutions for SIF by reducing the truly 
three-dimensional crack problem to an idealised two-
dimensional problem for elastic material. The approximate 
solution along the central section of surface semi-elliptical 
crack appeared appropriate and convenient for practical 
use, /3, 4/. 

The additional opening displacement and relative rota-
tion introduced by an edge crack are related to tension, σ, 
and bending, m, stresses acting on the discontinuity through 
compliance. By using appropriate boundary conditions for 
tension and bending fields to relate additional displacement 
and rotation with σ and m, the LSM provides two integral 
equations for σ and m. The interesting feature of the model 
is that values of J and COD are calculated at the tip of the 
surface crack, because the calculation involves the question 
of the region of its applicability. In LSM regions near the 
end of the model through-crack, it corresponds to the plate 
free surface, where the LSM can become inapplicable. 

The LSM can be applied to elastic-plastic region. This 
approach in most cases considers J integral that consists of 
an elastic and a plastic part, /4, 11/. This extension of LSM 
requires either the numerical solution of integral equations 
in incremental form, or modification of a finite element 
programme by line-spring analysis. Thus, widespread LSM 
application requires specialized computer codes. The 
interest in LSM lasted through decades because this model 
is simple for application, highly flexible in regards to the 
crack profile and can be extended to treat multiple crack 
problems of different geometries, /12/. 
The Rice-Levy formulation of LSM 

The LSM, introduced by Rice and Levy, is an attempt to 
solve the problem of tensile stretching and bending of a 

plate with surface crack partly penetrating through the 
thickness. The idea is to present part-through cracked 
section as a continuous spring, of both stretching and bend-
ing resistance with compliance coefficients chosen to match 
those of an edge cracked strip in plane strain, Fig. 1, /3/. 

 
Figure 1. A surface crack partly penetrating plate thickness, /3/. 

Slika 1. Površinska prslina koja prolazi kroz deo debljine ploče, /3/ 

The force and moment transmitted across the cracked 
section are computed calculating SIF at points along the 
crack tip. Simple approximate theories of generalized plane 
stress and Kirchoff-Poisson plate bending are employed 
together with a representation of the part-through surface 
crack as a continuously distributed line spring. For the two-
dimensional problem of an infinite sheet in the x1x2 plane, 
average stress and nominal bending stress in the thickness 
are used, defined by integration over the sheet plate thick-
ness in x3 direction. Remote loads are denoted by σ∞ and 
m∞ in Fig. 1. For an edge crack in a plate loaded in tension 
and bending SIF is 

 [ ]1/ 2
t bK h g mgσ= +  (1) 

where gt and gb are dimensionless functions of the crack 
depth l to thickness h ratio ξ = l/h. For ξ < 0.7 functions are 

( )1 2 2 3 41 99 0 41 18 70 38 48 53 85tg ξ ξ ξ ξ ξ= − + − +/ . . . . .  (2a) 

( )1 2 2 3 41 99 2 47 12 97 23 17 24 80bg ξ ξ ξ ξ ξ= − + − +/ . . . . .  (2b) 

The additional displacement and rotation of one end of 
the strip relative to the other due to the introduction of the 
crack, δ and θ, respectively, are defined using compliance 
coefficients Aij, where obviously Abt = Atb. 
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The generalized displacement hδ, associated with σ and 
the generalized displacement h2θ/6, associated with m, are 
represented here by a column matrix of general displace-
ments; also the compliance matrix A and column stress 
matrix are defined, related by Eq. (3) 

 2

6

tt tb

bt bb

h
A A

h A A m

δ
σ

θ =  (3) 

Irwin’s relation between the potential energy release rate 
G and the rate of compliance change with crack length for 
the plane strain condition is generalized to the case of 
applied tension and bending loading: 

 
2 2

2 2 21 1 ( 2t t b bG K h g g g m g
E E
ν ν σ σ− −

= = + + 2 2 )m  (4) 

If, for example, only σ is applied and m is zero, one can 
obtain hδ = Attσ , and G is written as 

 21 1( ) , 0
2 2

ttdA
G h m

d
σ δ σ∂

= =
∂

=  (5) 

The generalization for combined tension and bending is 

 
21

2 6
hG h m

l l
( )

θσ δ
⎡ ⎤⎛ ⎞∂ ∂

= +⎢ ⎥⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
=  

1
2

tt tb bt bbdA dA dA dA
m m m

dl dl dl dl
σ σ σ⎡ ⎤⎛ ⎞ ⎛= + + +⎜ ⎟ ⎜⎢ ⎥⎝ ⎠ ⎝⎣ ⎦

⎞
⎟
⎠

 (5a) 

Unknown variables dAij/dl are calculated by equating 
common coefficients in quadratic forms of Eq. (5), using 
the symmetry for Atb. After integrating, the expressions for 
δ and θ are given here by the matrix equation 

 
22 1

6 6
tt tb

bt bb

h h
mE

δ σα αν
θ α α

−
=
( )

 (6) 

The column matrix on the left hand side of Eq. (6) is the 
matrix of additional displacement and rotation; it is given 
by the product of the matrix of dimensionless compliance 
coefficients and the column stress matrix, where αλµ are 
dependent on ξ = l/h. 

 
0

1 l
g g dl b t

h
, , ,λµ λ µα λ= ∫ µ =  (7) 

The results of calculations for coefficients gt and gb 
using Eqs. (2a) and (2b) are given in Fig. 2, and in Fig. 3 
for dimensionless compliance coefficients αλµ, using Eqs. 
(7), (6a) and (6b), employed for the line spring, /3/. The SIF 
value calculated at the midpoint of semi-elliptical crack 
using numerical integration and piecewise linear interpola-
tion functions, is taken as a conservative estimate of SIF. It 
is divided by the SIF of an edge crack in plane strain for the 
same remote tensile or bending load and of depth as at the 
centre point. Results for dimensionless K are given for 
nominal tensile stress σ∞ (m∞ = 0) and nominal bending 
load m∞ (σ∞ = 0). Only results for SIF under pure tensile 
loading at midpoint of a semi-elliptical crack where l(0)/h = 
lo/h are illustrated here. The results of the model are in close 
agreement with presumably more accurate calculation 
given in Table 1, see Ref. /3/. 

 
Figure 2. Coefficients gt and gb for an edge cracked strip. 

Slika 2. Koeficijenti gt i gb za ivičnu prslinu 

 
Figure 3. Compliance coefficients αλµ. 
Slika 3. Koeficijenti popustljivosti αλµ 

Table 1. Dimensionless K at semi-elliptical crack midpoint, m = 0. 
Tabela 1. Bezdimenziono K na sredini polu-eliptične prsline, m = 0 

lo/h  2a/h K/(h1/2 σ∞) Reference result 
0.1 0.25 0.41 0.42 
0.2 0.4 0.48 0.51 
0.2 0.5 0.52 0.60 
0.3 0.6 0.57 0.63 
0.3 0.75 0.63 0.73 
0.4 0.8 0.68 0.70 
0.4 1.0 0.76 0.84 
0.5 1.0 0.82 0.82 
0.5 1.25 0.90 0.94 
0.6 1.2 0.96 0.91 
0.6 1.5 1.06 1.15 

 
Once σ  and m are determined from integral equations, 

SIF at points along the crack tip is given by Eq. (1). The 
solution is given for a special case when each of the dimen-
sionless compliance coefficients varies in the form 

 21X Xλµ λµα α= −o( )  (8) 

where αo
λµ = const, X = x1/a is a dimensionless coordinate 

and αo
λµ is the value of αλµ for X = 0. Integral equations are 

reduced to the system of equations which determine α and m: 

 [ ]
21

2 tt tb
h m
a

ν α σ α σ σ∞
−

+ + =o o  (9a) 

 0 03 3 1
2 bt bb

h m m m
a

( )( )ν ν
α σ α ∞

+ − ⎡ ⎤+ + =⎣ ⎦  (9b) 
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It is claimed that the only shape of a crack which is 
consistent with the assumed functional form of Eq. (8) is 
the case of a very shallow crack, l/h << 1, of depth propor-
tional to (1 – X2)1/4. 

It is concluded also that the numerical solution of inte-
gral equations may be replaced by the simple approximation 
for σ and m, which gives a conservative overestimate to SIF. 
King’s model 

The model introduces unknown force N per unit length 
and unknown moment M per unit length which act on crack 
faces; the average closure stress σc (instead of previous σ∞) 
and nominal bending stress m (instead of previous m∞), 
related by similar relations in both LSM models. 
 26c N h m M h,σ = =  (10) 

It is assumed that load is carried partly by the edge crack 
and partly by the through crack between which displace-
ment compatibility is enforced, Fig. 4, /4/. 

 
Figure 4. King’s line spring model  

Slika 4. Kingov model opruga u nizu  

According to the critical COD model of Irwin, the 
remaining ligament yields and the surface crack behaves as 
a through-thickness crack of same length with the opening 
reduced by closure forces equal to the product of flow 
stress and the area of the uncracked ligament. The model 
gives the expression for COD in the middle of the central 
crack of length 2a in an infinite plate under a remote stress 
σ perpendicular to the crack plane. King’s model assumes 
that COD is obtained for stress σ reduced by stress σc: 
 2 clCOD ( )/ Eσ σ= −  (11) 

King’s model uses Eqs. (6) as well as two additional simple 
expressions for displacement δ and rotation θ (being given, 
but not derived), in order to eliminate δ and θ from them. 
Thus obtained system of two equations in σc and m, Eqs. 
(7) and (8), /4/, that correspond to Eqs. (9) here, but given 
in a different form, are solved and solutions are written as 

 c m,σ ασ βσ= = −  (12) 

with α and β being functions of ratio l/h, dimensionless 
compliance coefficients αλµ and Poisson’s coefficient ν. 

It can be shown that LSM model Rice-Levy contains the 
same equations as Eqs. (12) of King’s model for the special 
case when Eq. (8) is fulfilled and if m∞ = 0. 

In the King’s model the crack half-length a is extended 
by the plastic zone of diameter 2ry (ap = a + 2ry), where ap 
is given in implicit relation between plate width W, σc, σ 
and flow stress σF. The other feature of the King’s model 
are the defined ligament yield stress, σLY, and net section 
yield stress, σNSY. The plate will carry the load up to strip 
yielding of the plate edge, what occurs when the applied 
stress is equal to σNSY. In this way the model gives expres-
sions for J integral, CTOD and CMOD for linear elastic and 
elastic-plastic regions. Thus in the elastic-plastic region 
 el p LY NSYJ J J , σ σ σ= + < <  (13) 

where the elastic part Jel is given by Eq. (4) for σ = σLY and 
using Eq. (1) for an edge crack. The plastic part Jp reads: 
 p F LYJ ( )σ δ δ= −  (14a) 

with δLY calculated at σ = σLY, so that 

 4 1F
p y LY

lJ a r a r
E h
( )

σ
y Fσ σ σ⎡ ⎤⎛ ⎞= + − − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (14b) 

Similar expressions are obtained for CTOD and CMOD, 
derived under the assumption of small rotation angle θ. 

The model is applicable to parameters for flat plates in 
tension. The remote stress is the nominal membrane stress 
normal to the crack plane, thus redistribution of stresses 
caused by the crack is neglected. This simplified model can 
be applied when the crack length is short in comparison to a 
dimension of the component. For circumferential flaws in 
pipes, the errors can be expected if curvature is neglected. 

Typical comparison of model behaviour prediction with 
experimental data of measured CMOD and J integral in 
testing of tensile panel of steel API-5LX-70 containing 
surface cracks is shown in Fig. 5. Satisfactory agreement is 
shown and σNSY is accurately modelled because the tested 
steel had exhibited a small strain hardening coefficient, /4/. 
Improvement of some features of King’s model 

The results of King’s model will be analysed in order to 
establish relations between basic parameters (applied stress, 
J integral, CMOD and CTOD). The flat tensile panel, made 
of steel TSt.E460, of yield strength σy = 470 MPa, of width 
W = 300 mm and thickness 20 mm, with central crack of 
depth 9 mm and length 52 mm, is tested, /13/. The flow 
stress is σF = 550 MPa. Calculation is performed here with 
σLY = 356.9 MPa and σNSY = 507 MPa. Calculated J integral 
values are shown together with approximate polynomials of 
the fourth and the fifth order large stress value range, and of 
the second order polynomial for small stress value range, 
which fits almost perfectly, Fig. 6. Correlation coefficients 
R are given in parentheses. Approximation error is SD. The 
higher the polynomial order, the better the approximation. 
The fifth order polynomial is acceptable here, /14/. 
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Figure 5. Comparison of model solutions and experiment, /4/. 

Slika 5. Poređenje rešenja modela i eksperimenta, /4/ 
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Figure 6. J integral versus applied stress S for linear-elastic (a) and in elastic-plastic region (b). 

Slika 6. Zavisnost J integrala od primenjenog napona S za linearno-elastičnu (a) i elasto-plastičnu oblast (b) 
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Figure 7. J integral versus applied stress S for linear-elastic (a) and elastic-plastic region (b). 
Slika 7. Krive J integral–primenjen napon S u linearno-elastičnoj (a) i elasto-plastičnoj oblasti (b) 

Tensile properties are taken for parent metal (BM), steel 
TSt.E460, σy = 460 MPa, σF = 542.5 MPa, for undermatched 
weld metal (WM-U), σy = 400 MPa, σF = 500 MPa, and for 
overmatched weld metal (WM-O), σy = 520 MPa, σF = 
585 MPa, /10/. The central crack (depth l = 9 mm, length 
24 mm) is made in BM or in WM, in the plate (width W = 
80 mm, thickness h = 20 mm). Yield stress of the ligament 
was calculated by King’s model, σLY with σF, but if σF is 

replaced by yield strength for uniaxial tension σy, Eq. (15), 
a little bit earlier and steeper increase of the J integral is 
obtained with remote stress opposed to when σLY is defined 
according to the model, Fig. 7a: 

1 11 1LY F LY yl h l h( / ) ( / )σ α σ σ α σ− −= − → = −  (15) 

where coefficient α is defined in the model, /4/. 
In Fig. 7a, SF denotes σF. Thus the conservatism of 

King’s model can be increased. A resistance curve can be 
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used to compare material properties, (Fig. 7b): for the same 
crack, the crack driving force is higher in weaker material. 

Similar results are obtained for J integral (Fig. 8a). 
Slopes of curves for WM in similar diagrams (Fig. 8) differ 
from the slope for BM: WM-O has the smallest, and WM-U 
the largest slope, thus J integral and CMOD of weaker WM 
are the largest for the same stress. The second case is incon-
venient for weld joint integrity, since for the same crack 
driving force, CMOD is the largest for WM-U. Shielding 
effect of stronger WM-O is expressed in smaller CMOD for 
(large) crack, and plastic strains are in a region remote from 
the welded joint. The border between linear-elastic and 
elastic-plastic range for BM is about 300 MPa, thus the 
right side diagram mainly covers the elastic-plastic region. 
The relation between J and CTOD is analysed on the same 
specimen for remote stress (linear-elastic and elastic-plas-

tic), Fig. 9. They are of linear regressions with regression 
coefficients greater than 0.998. 

In this way King’s model provides an analytical method 
for structural integrity assessment in elastic-plastic range. 

The relation J vs. CTOD calculated in the elastic-plastic 
range for σy = 470 MPa, is theoretically linear, /15/. For the 
considered example (W = 300 mm), using King’s model, 
diagrams given in Fig. 9 and linear regression in terms of σy 
in Eq. (16) are obtained. The Eq. (16) is in agreement with 
the expected relation for plane stress, /16, 17/. 

Implementing the results from Eq. (15) for 2a = 52 mm, 
l = 9 mm, h = 20 mm, σ ≥ 200 MPa to Eq. (16), the relation 
J integral vs. CTOD is closer to theoretical value, Eq. (17): 
 1 15 yJ . CTODσ≈  (16) 
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Figure 8. The influence of metal properties on J integral (a) and CMOD dependence (b) on remote stress in elastic-plastic region. 

Slika 8. Uticaj osobina metala na zavisnost J integrala (a) i CMOD (b) od udaljenog napona u elasto-plastičnoj oblasti 
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Figure 9. The linear relation between J integral and CTOD (King’s model for σLY defined by σF = 550 MPa (a) and by σy = 470 MPa (b)). 

Slika 9. Linearna zavisnost J integrala i CTOD (model Kinga za σLY određeno sa σF =550 MPa (a) i sa σy = 470 MPa (b)) 

FAILURE ASSESSMENT DIAGRAM 

One-parameter approach of LEFM is not applicable to 
components with large scale yielding at the crack tip, when 
tensile stress is close to material yield strength. In order to 
include such real situations, generally between two limiting 
cases – the brittle fracture and plastic collapse, the two-
parameter approach of fracture mechanics is applied, 
introducing the failure assessment diagram (FAD). The 

failure assessment curve (FAC), defined by the functional 
dependence of the relative stress intensity factor (SIF), Kr, 
on relative stress Sr, is the boundary line between unsafe 
region above it and safe region below it, where fracture is 
not expected, /18, 19/. 
FAD and secondary stresses 

The failure assessment procedures of the CEGB and 
SINTAP assume that secondary stresses do not influence 
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fracture when the structure fails by plastic collapse, thus 
they are not taken into account in determining Sr nor the 
limit load, or the degree of ligament plasticity Lr, but they 
are taken into account in determining Kr. 

Total SIF value is obtained by superimposing contribu-
tions of primary and secondary stresses, KI

p and KI
s, respec-

tively, around the crack tip /20, 21/. 

 
p s

II I
r

Ic Ic

K KKK
K K

+
= =  (18) 

In as-welded components and if the residual stress (RS) 
distribution is not known, an uniform distribution may be 
assumed and magnitude equal to the appropriate material 
yield strength σy for levels 1 and 2, /21/. In the analysis for 
level 2, applied in here, it can be taken as the lower of 

 yσ    or   1 4 n
y.

σ
σ

σ
⎛ ⎞−⎜ ⎟
⎝ ⎠

 (19) 

where σn is the effective net section stress and σ  is the 
flow stress. When a structure is loaded by primary stresses, 
a part of RS is relieved by plastic strain. A simple model of 
this mechanical stress relief is to assume that the sum of the 
primary load and RS cannot exceed the flow stress. For 
yield magnitude of RS in the unloaded state, the PD 6493 
permits the use of Eq. (19) to compute KI

s. 
When secondary stresses are present, PD 6493 intro-

duces a correction term for assessment levels 2 and 3 to 
allow for plasticity interactions of primary and secondary 
stresses by introducing the plasticity correction factor ρ: 

 I
r

Ic

KK
K

ρ= +  (20) 

The level of RS remaining after the PWHT for the low 
alloy steel is about 30% of the room temperature WM yield 
strength when stresses are parallel to the weld, i.e. if the 
crack is transverse to the weld. Transverse weld flaws are 
normally located within the zone of tensile stress, whose 
width is greater than the weld width. Even for flaws whose 
tips are located in the zone of compressive stresses, the net 
effect of the stress distribution is to produce a positive SIF.  

For the level 1 and 2 estimation, the parameter Sr is 
calculated as 
 r nS /σ σ=  (21) 

If the flow stress is above 1.2σy, the value σ = 1.2σy is 
taken to calculate Sr. For a constant crack size Sr is propor-
tional to the applied load and Kr given by Eq. (18) scales 
with load as a linear function, too. Thus, the points (Sr, Kr) 
for increasing load and the constant crack size can be 
displaced along the ray through the origin, as it is shown in 
references (20, 22). It means that the plasticity correction 
factor ρ in Eq. (20) is neglected, as it is done here, but in 
general the relation is not linear, as it is stated in Ref. /22/. 

For a through-thickness crack the conservative estimate 
of applied SIF is calculated using the expression 
 1IK aσ π=  (22) 

where σ1 is the maximum value of tensile stress in cross 
section and 2a is the crack length. 

The calculation of FAD 
Tensile specimens sized 300×80×20 mm are welded by 

the submerged-arc welding (SAW). Cracks are made by 
electrical discharge machining, and of length 2a = 24 mm 
and 9 mm deep, with tips 0.1 mm wide, located in the heat 
affected zone (HAZ). The influence of PWHT on RS is 
estimated for the centre cracked specimen (MT panel) made 
of HSLA steel TStE 460, with known values σy = 460 MPa, 
σ  = 542.5 MPa, ε0 = 0.002, α = 1.12, /23/. The difference 
in yield strength of the parent metal (BM) and overmatch-
ing weld metal (WM-O) is not considered because the 
approach should be conservative. According to PD 6493 it 
is assumed that RS is equal to σy in the as-welded condition 
and that RS is equal to 0.3σy after the PWHT, the latter 
being a more conservative criterion than Eq. (19). The 
correction for finite specimen width is applied, /15, 20/ 

 
1 2

1 2I
RaWK a πσ π ⎡ ⎤⎛ ⎞= ×⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

/

sec  

  (23) 21 0 025 0 06RaW RaW× − +( . . 4)

where RaW is the ratio of crack length 2a = 24 mm and 
specimen width W = 80 mm (RaW = 0.3). 

An external force P is introduced, producing a remote 
membrane tensile stress σP in the specimen. Corresponding 
Sr

t values are calculated using the formula derived from 
Eq. (21) which takes into account the RaW ratio: 

 
1

P
t
rS

RaW
σ

σ
=

−( )
 (24) 

The derivation of the equation defining the R-6 curve 
postulates small scale yielding (where RS have a significant 
influence on fracture), and thus is used in FAD based on J-
controlled crack growth with the abscissa given by the ratio 

 
0

EPRI
r

PS
P

=  (25) 

where P and P0 are forces per unit thickness, and P0 is the 
limit load for plain stress 

 0 04P dσ= 3  (26) 

and with Kr depending on J integral elastic solution, Je, 
which is the function of the effective crack length ae and P, 
as well on J integral as a function of stable crack extension, 
JR(∆a), /20, 24/ 

 r r e e RK J J a P J( , ) ( )a= = ∆  (27) 

FAD diagram calculated for a centre through-thickness 
crack using FORTRAN program and four values of P and 
two levels of RS is given in Fig. 10. Solid lines represent 
points for residual stress level equal to σy and correspond-
ing to four P-values from 0.5 MN to 0.65 MN, with incre-
ment of 0.05 MN (first point is calculated for the lowest 
value – left hand side and the last point for maximal load 
value – right hand side. Corresponding linear regression, 
with correlation coefficient R = 0.99998, is given in Fig. 10, 
as well as FACs based on J-controlled crack growth for n = 
5, 10 and 20. 
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Representative points for the state after PWHT with 
RS = 0.3σy are plotted for the same four values of P, so for 
P increasing, points lay on a straight from the left to the 
right hand side on the diagram. These points are labelled as 
open and define the linear regression with R = 1. 

Upper linear regression, the dashed line, gives Kr for the 
crack without the PWHT. The critical P value, i.e. the cross 
section of the linear regression line with the R-6 curve, 
determines the value P1 = 530 kN, while the plane stress 
EPRI boundary curve for n = 10 (assumed n = 10 as for the  

value of the steel), determines critical value P2 = 50 kN. For 
the state after PWHT, the critical P value determined by the 
R-6 is equal to P3 = 586 kN, and by EPRI P4 = 664 kN. The 
effect of PWHT can be estimated from the difference found 
between R-6 (P3 – P1 = 56 kN), and for case n = 10, (P4 – 
P2 = 114 kN). 

The boundary curve for n = 10 allows an increment in 
critical P value, in as-welded state P2 – P1 = 20 kN and 
after PWHT P4 – P3 = 78 kN. The points are in straight 
lines along the Kr axis for a length proportional to RS value. 
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Figure 10. The effect of PWHT and tensile load P on the stability of 
through-thickness centre cracked specimen, RaW = 0.3. 

Slika 10. Uticaj PWHT i zateznog opterećenja P na stabilnost uzorka 
sa centralnom prolaznom prslinom, RaW = 0,3 

Figure 11. FAD analysis of tensile specimen containing the centre 
through-thickness crack of length RaW = 0.3. 

Slika 11. FAD analiza zateznog uzorka sa centralnom prolaznom 
prslinom dužine RaW = 0,3 

Failure analysis according to SINTAP 
The values of the loading parameter Lr for the basic level 

of SINTAP are  
 r ref y nL yσ σ σ σ= =  (28) 

and the values of the correction function f(Lr) 
6

1 2
211 0 3 0 7

2
rL

r rf L L( ) . . e µ
−

−⎛ ⎞ ⎡ ⎤= + +⎜ ⎟ ⎣ ⎦⎝ ⎠
,   0 ≤ Lr ≤ 1 (29a) 

1 21 N
r r rf L f L L( )/( ) ( ) −= = ,   0 ≤ Lr ≤ Lr

max (29b) 
are calculated for the BM with parameters: 

( )0 3 1 y mN R. σ= −   and  
1
2

y m
r

y

R
L max

σ
σ
+

=  (30) 

For crack of length 2a = 24 mm and ultimate tensile 
strength of the steel Rm = 625 MPa, values for N = 0.0792 
and Lrmax = 1.179 are calculated. Results calculated for 
variable load are illustrated in Fig. 11 for as-welded condi-
tion (solid circles) with RS = σy and for the state after the 
PWHT (open circles) with RS = 0.3σy. Points shown in the 
diagram correspond to six P values, of which the first is 
calculated for 0.5 MN and the last for 0.75 MN, going from 
left to right. 

The critical P value for as-welded state is P = 645 kN 
and after the PWHT, P = 695 kN. 
The influence of crack length and yield strength 

Increase of crack constant load, Sr, depends linearly on 
crack area only if the crack area is small compared to the 

total cross section, since it is inverse to the effective net 
cross section. Sr and Kr are not proportional to the crack 
size at the same time, since KI given by Eq. (22) or (23), is 
a nonlinear function of crack size. So, in general case, the 
failure path of increasing crack size is not a straight line, as 
it is sometimes illustrated, Ref. /19/, and is not the same as 
increasing load path for a crack of fixed length. 

The relation between Sr
t and Kr

t is not linear, e.g. Kr
’ = 

k(Sr
’ – Sr) + Kr, where k is a constant. 

The analysis is here illustrated in Fig. 12. 
The diagram given left compares paths in FAD for given 

four tensile load values and for the same through-thickness 
crack in the same BM (KJc = 220 MPa·m1/2 is an experimen-
tal value) and in the WM, overmatching the BM (σ = 
650 MPa). BM plastic collapse occurred at 600 kPa when 
using R-6 curve, while the specimen made of WM would 
be safe for all given P values. 

The influence of load P when crack size RaW changes is 
analysed in the diagram on the right side in Fig. 12. It is 
seen that paths to failure for increasing RaW are not 
represented by straight lines. 

Critical loads for three approaches are shown in Table 2. 

Table 2. Critical loads obtained using different FACs (in kN). 
Tabela 2. Kritična opterećenja dobijena za različite FAC krive (kN) 

State R-6 EPRI, n = 10 SINTAP 
As welded 530 550 645 

After PWHT 586 664 695 
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Figure 12. Plane stress failure paths for BM and WM of centre cracked specimen with load change, (a) RS = 0, (b) RS = 0.3σy. 

Slika 12. Putanja loma, ravno stanje napona, BM i WM, epruveta sa centralnom prslinom, uz promenu opterećenja, (a) RS = 0, (b) RS = 0,3σy 

CONCLUSIONS 

Application of LSM in fracture mechanics enables an 
analysis of a part-through crack in a component represented 
by a plate or a shell, using first estimate of the crack for an 
analytical approach; if computational mechanics techniques 
are applied, finite element analysis should be three-dimen-

sional. The general problem of a three-dimensional crack in 
a solid with given geometry is a strong interaction between 
the stress field disturbed by the crack and the bounding 
surfaces of the solid. Even in linear elasticity, an analytical 
treatment of the problem seems to be intractable. 
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